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Summary 
Genetic Algorithms (GA) provide an attractive approach to 
solving the challenging problem of dynamic routing and 
wavelength assignment (RWA) in optical WDM networks, 
because they usually achieve a significantly low blocking 
probability. Available GA-based dynamic RWA algorithms were 
designed mainly for WDM networks with a wavelength 
continuity constraint, and they can not be applied directly to 
WDM networks with wavelength conversion capability. 
Furthermore, the available GA-based dynamic RWA algorithms 
suffer from the problem of requiring a very time consuming 
process to generate the first population of routes for a request, 
which may results in a significantly large delay in path setup. In 
this paper, we study the dynamic RWA problem in WDM 
networks with sparse wavelength conversion and propose a novel 
hybrid algorithm for it based on the combination of mobile 
agents technique and GA. By keeping a suitable number of 
mobile agents in the network to cooperatively explore the 
network states and continuously update the routing tables, the 
new hybrid algorithm can promptly determine the first 
population of routes for a new request based on the routing table 
of its source node, without requiring the time consuming process 
associated with current GA-based dynamic RWA algorithms. To 
achieve a good load balance in WDM networks with sparse 
wavelength conversion, we adopt in our hybrid algorithm a new 
reproduction scheme and a new fitness function that 
simultaneously takes into account the path length, number of free 
wavelengths, and wavelength conversion capability in route 
selection. Our new hybrid algorithm achieves a better load 
balance and results in a significantly lower blocking probability 
than does the Fixed-Alternate routing algorithm, both for optical 
networks with sparse and full-range wavelength converters and 
for optical networks with sparse and limited-range wavelength 
converters. This was verified by an extensive simulation study on 
the ns-2 network simulator and two typical network topologies. 
The ability to guarantee both a low blocking probability and a 
small setup delay makes the new hybrid dynamic RWA algorithm 
very attractive for current optical circuit switching networks and 
also for the next generation optical burst switching networks. 
Key words: Mobile agents, genetic algorithm, dynamic routing 
and wavelength assignment, WDM networks, wavelength 
conversion. 

1. Introduction 

Due to their huge bandwidth capacity, all-optical networks 
based on wavelength-division-multiplexing (WDM)  

 
technology hold great promise for serving as the backbone 
of the next generation Internet. In a wavelength-routed 
WDM network, data are routed in optical channels called 
lightpaths. To establish a lightpath without wavelength 
conversion, the same wavelength is required on all the 
links along the path; this is referred to the wavelength 
continuity constraint. The wavelength continuity constraint 
usually results in a high blocking probability in a 
wavelength-routed WDM network, and a common 
approach to alleviating this constraint is the adoption of 
wavelength converters.  

A WDM network is referred to as a network with full 
wavelength conversion if each node of the network has 
wavelength conversion capability [1]. On the other hand, a 
WDM network is referred to as a network with sparse 
wavelength conversion if only a sub-set of the network 
nodes has wavelength conversion capability. Furthermore, 
we say that a node is capable of full-range wavelength 
conversion if a wavelength channel on any input of the 
node can be converted to any wavelength channel on any 
output; a node is capable of limited-range wavelength 
conversion if a wavelength channel on any input of the 
node can only be converted to particular wavelength 
channels on any output [2]. Since the wavelength 
converters are expensive devices, it is practically infeasible 
to equip each network node with a wavelength converter. 
Therefore, current research efforts focus mainly on 
networks with sparse wavelength conversion [1],[2] 
[3],[4],[5],[6].  

In WDM networks, the Routing and Wavelength 
Assignment (RWA) problem concerns determining the 
routes and wavelengths to be used to establish lightpaths 
for connection requests. The RWA problem can be 
generally classified into two types: static and dynamic. In 
the former type, network topology and connection requests 
are given in advance, and the problem is to find a solution 
that minimizes network resources. It has been proved that 
the static RWA problem is NP-complete [7]. In the latter 
type, lightpaths are dynamically established upon the 
arrival of requests. If no route with free wavelength is 
available for a request, the request will be blocked. 
Generally, dynamic RWA algorithms aim to minimize the 
total blocking probability in the entire network. 
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The dynamic RWA problem is more challenging, and 
many approaches have been proposed for solving it 
[2],[7],[8],[9],[10]. In the fixed routing approach, a single 
fixed route is predetermined for each source-destination 
pair. Whenever a request arrives, its fixed route is 
attempted for wavelength assignment. In fixed alternate 
routing scheme, a set of routes is pre-computed for each 
source-destination pair and stored in an ordered list at the 
source node’s routing table. As a connection request 
arrives, one route is selected from the set of pre-computed 
routes. Fixed alternate routing always achieves better 
performance than fixed routing, and this approach actually 
shows a good trade-off between performance and control 
overhead [2]. In the adaptive routing approach, the route is 
computed based on the current network state at the arrival 
of a request, so it obtains the best performance [8],[9]. 
However, adaptive routing requires a relatively longer 
setup delay and a higher control overhead, including 
special support from control protocols to keep track of 
global network states.  

In a WDM network with sparse wavelength 
conversion, the dynamic RWA problem needs deliberate 
study to take full advantage of the gain from wavelength 
conversion [10],[11]. However, conventional dynamic 
routing algorithms may not work well in an environment 
with sparse or/ and full wavelength conversion [10]. GAs 
represent a promising approach to the RWA problem in 
WDM networks, and several GA-based RWA algorithms 
have been proposed [12],[13],[14],[15]. In [12],[13], N. 
Banerjee and S. Pandey et al. formulated both the static 
RWA and dynamic RWA problems as a multi-objective 
optimization problem and solved it using genetic 
algorithms. However, Banerjee and Pandey’s dynamic 
RWA algorithms require the re-routing of available 
connections and thus are not suitable for the high capacity 
WDM networks. Also, these authors did not consider 
wavelength conversion in their GA-based RWA algorithms. 
D.Bisbal et al. [14] proposed a novel GA-based algorithm 
for dynamic RWA problem in WDM networks with 
wavelength continuity constraint, and V.T.Le et al. [15] 
improved Bisbal’s algorithm by using a more general cost 
function to achieve a better load balance. Bisbal’s 
algorithm does not require the re-routing of available 
connections and it can achieve a significantly low blocking 
probability. However, it can not be applied directly to the 
dynamic RWA problem for WDM networks with 
wavelength conversion capability, and it also requires a 
very time consuming process based on random searching 
to generate the first population of routes for a new request, 
which can result in a significantly large setup delay.  

In this paper, we focus on the dynamic RWA problem 
in WDM networks with sparse wavelength conversion, and 
propose a novel hybrid algorithm for solving it based on a 
combination of mobile agents technique [16], [17], [18], 

[19],[20] and genetic algorithm. The main contributions of 
our work are the following:  
• We extend Bisbal’s algorithm used for the dynamic 

RWA problem in WDM networks without wavelength 
conversion to solve the dynamic RWA problem in 
WDM networks with sparse wavelength conversion. 

• We propose a new reproduction scheme and a more 
general fitness function that simultaneously takes into 
account the path length, number of free wavelengths 
and wavelength conversion capability in route 
evaluation, such that a good load balance and low 
blocking probability can be achieved. We also 
propose some general formulas for determining the 
key parameters in the new fitness function. 

• We adopt a new scheme, based on the mobile agents 
technique [20], for generating the first population of 
routes for the hybrid algorithm. In this scheme a 
suitable number of mobile agents are kept in the 
network to cooperatively explore the network states 
and continuously update the routing tables, such that 
the first population routes for a new request can be 
determined promptly based on the routing table of its 
source node without requiring the very time 
consuming random searching process of old GA-based 
dynamic RWA algorithms. 

Our proposed hybrid algorithm is applicable to the 
dynamic RWA problem for both WDM optical networks 
with sparse and full-range wavelength converters and those 
with sparse and limited-range wavelength converters. Since 
the promising fixed-alternate routing algorithm shows a 
good trade-off between performance and control overhead, 
and a fixed-alternate algorithm with a small number of 
alternate routes can asymptotically approache the 
performance of an adaptive routing algorithm in terms of 
blocking probability [2], we use the Fixed-Alternate 
algorithm in this work for comparison with our hybrid 
algorithm. Extensive simulation results based on two 
typical network topologies show that our proposed 
algorithm can adapt well to traffic variations and 
significantly outperforms the fixed-alternated routing 
algorithm in terms of blocking probability.  

The rest of this paper is organized as follows: In 
Section 2, we briefly present some background about GA 
algorithms and mobile-agents technique. Section 3 presents 
our new hybrid algorithm based on the combination of 
mobile agents and GA. Section 4 provides the simulation 
results and discussion. We conclude this paper in Section 5. 
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2. Genetic Algorithms and Mobile Agents 
Technique 

In this section, we briefly introduce the main ideas of 
genetic algorithms and mobile agent techniques for 
network routing. In particular, we describe in more detail 
the mobile agents-based algorithm proposed by S.H. Ngo 
et al. [20], which will be adopted in our new hybrid 
algorithm to generate the first population of routes for a 
request 

2.1 Genetic Algorithms 

Genetic Algorithms [21],[22] are a class of probabilistic 
algorithms based on the mechanism of biological evolution. 
The aim of a GA is to dramatically reduce the search space 
of an optimization problem while retaining the capability 
to converge to the global optimal solution of the problem. 
In a GA application, the first step is to specify the 
representation of each possible solution of the problem as 
an individual. The next step is to define a population of 
some individuals with their initial values, a fitness value 
for each individual and genetic operators such as crossover, 
mutation, and reproduction. The main steps of a GA are 
summarized as follows:   
1. Initialization: A number of individuals are generated 
for the first generation of the population. 
2. Determination of Fitness: The effectiveness of an 
individual in a population is evaluated by the fitness 
function. This function assigns a cost to each individual in 
the current population according to its ability to solve the 
problem. The better an individual solves the problem, the 
higher its fitness value is. 
3. Crossover: This is a variety-generating feature of GA, 
in which the pairs of individuals (parents) mate to produce 
offspring. Each offspring draws a part from one parent and 
the other part from another parent. 
4. Mutation:  Mutation changes an individual directly to a 
new individual. The main aim of this operator is to avoid 
converging to a local solution. 
5. Reproduction and Stopping Conditions: After the GA 
applies genetic operators to the current population, it 
selects individuals to generate the next generation of 
population. This process is called reproduction, which is 
repeated until a good individual to solve the problem is 
found. However, there is no guarantee that an optimal 
solution can always be found because GA is a stochastic 
searching process. Hence, the reproduction must be 
stopped after a certain number of generations.  More 
details about genetic algorithms can be found in [21],[22]. 

2.2 Mobile Agents Technique for Routing in WDM 
Networks 

Routing in communication networks can be resolved 
efficiently by means of Ant Colony Optimization (ACO) 
[16],[17],[19], in which the routing solution can be built 
using the behavior of ant-based mobile agents in their 
foraging of network states. These collective agents 
indirectly communicate through pheromone trailing 
(stigmergy) in the environment, and an agent can find a 
“good” route in terms of the shortest, least congested path 
from the source to the destination by following the 
pheromone trails of others. Garlick et al. [18] proposed an 
ACO-based algorithm to solve the dynamic RWA problem, 
in which at the arrival of a new connection request a 
number of mobile agents are launched from the source to 
search for the routes to the destination, and the final best 
path for the connection request is determined when all 
mobile agents complete their exploitation tasks. As a new 
set of mobile agents must be launched after the arrival of 
every new connection request, Garlick’s algorithm may 
incur a very large setup delay due to the need to wait for 
all ants to complete their search. To overcome the problem 
associated with Garlick’s algorithm, S.H. Ngo et al. [20] 
proposed a new mobile agents-based algorithm for solving 
the dynamic RWA problem in WDM networks without 
wavelength conversion. By keeping a suitable number of 
ants in a network to cooperatively explore the network 
states and continuously update the pheromone tables, this 
algorithm enables the route for a connection request to be 
determined promptly by the current states of routing tables, 
with a small setup delay. Note, however, that the algorithm 
proposed in [20] usually results in a higher blocking 
probability than that of the GA-based algorithm for 
dynamic RWA in WDM networks without wavelength 
conversion [14],[15]. Since the main idea of the algorithm 
in [20] will be adopted in our hybrid algorithm for 
generating the first population of routes, we describe this 
algorithm here in more detail. 

In Ngo’s algorithm, a network node i with ki 
neighbors is equipped with a probabilistic pheromone table 
Ri  = [ ri

n,d ]ki, N-1 with N-1 rows (N is number of network 
nodes) and ki columns, as illustrated in Fig.1.  

 
 
 
 
 
 
 
 
 
 
 

0

2 4 

1 3 

5 

 
Destination 1 4 5 

0 r3
1,0 = 0.6 r3

4,0 = 0.3 r3
5,0 = 0.1 

1 r3
1,1 = 0.8 r3

4,1 = 0.2 r3
5,1 = 0.0 

… … … … 
5 r3

1,5 = 0.0 r3
4,5 = 0.2 r3

5,5 = 0.8 
   

Fig.1.  A simple network and its pheromone table of node 3.
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In the pheromone table, each row corresponds to a 
destination node and each column corresponds to a 
neighbor node; the value ri

n,d  is used as the selection 
probability of neighbor node n when an ant is moving 
toward its destination node d. 

Ants are launched from each node with a given 
probability ρ to a randomly selected destination every T 
time units; here ρ and T are design parameters. Each ant is 
considered to be a mobile agent: it collects information on 
its trip, performs pheromone table updating on visited 
nodes, and continues to move forward as illustrated in 
Fig.2. 
 
 
 
 
 
 
 
 

Whenever an ant visits a node, it updates the 
pheromone table element with the information gathered 
during its trip. Suppose an ant moves from source s to 
destination d following the path (s,…, i-1, i,…,d). When 
the ant arrives at node i, it updates the entry corresponding 
to the node s as follows: the probability of neighbor i-1 is 
increased while the probabilities of other neighbors are 
decreased. The pseudo-code of the main steps in this 
algorithm can be summarized as follows: 
{Ant generation} 
Do 
 For each node in network 

Select a random destination; 
Launch ants to this destination with a probability ρ 

 End for 
 Increase time by a time-step for ants’ generation  
Until (end of simulation) 

{Ant foraging} 
For each ant from source s to destination d do (in parallel) 

While current node i <> d  
 Update pheromone table elements 
 Push trip’s state into stack 
 If  (found at next hop) 
 Move to next hop  
 Else  
 Kill ant 

End if   
 End while 
End for 

When a new connection request arrives at its source 
node, its route is determined promptly from the routing 
tables: starting from the source node, the next hop will 
always be the neighbor that has the highest selecting 
probability, and this principle is applied until the 
destination node. With this method, the route is already 
determined upon the arrival of a connection request, so 
Ngo’s algorithm is an attractive tool in GA-based dynamic 

RWA algorithms for generating the first population of 
routes, which is usually based on the idea of very time 
consuming random searching [14] 

3. Dynamic RWA by Combining GA and 
Mobile Agents 

Note that the blocking probability of GA-based algorithms 
for dynamic RWA is usually significantly lower than that 
of mobile agents-based algorithms [14],[15],[20]. 
However, they may incur a very large setup delay because 
they require a very time consuming random searching 
process to generate the first population of routes after the 
arrival of a new request. On the other hand, in the mobile 
agents-based algorithm [20], the routes can be promptly 
determined upon the arrival of a connection request, so a 
small setup delay is guaranteed. Based on the above 
observations, we are motivated to propose a hybrid 
algorithm based on the combination of mobile agents and 
genetic algorithms for dynamic RWA in WDM networks 
with sparse wavelength conversion. 

3.1. Hybrid Algorithm for Dynamic RWA 

Our hybrid algorithm differs from the algorithm proposed 
by Bisbal [14] in that we have adopted a more general 
fitness function and also a new reproduction scheme to 
account for the effects of wavelength conversion capability 
on route selection, such that the GA-based approach can be 
used to solve the dynamic RWA problem in WDM 
networks with sparse wavelength conversion. Also, the 
gain of wavelength conversion can be fully explored to 
improve the blocking behavior of the new algorithm. The 
hybrid algorithm is executed at the arrival of a connection 
request between a source-destination node pair. It works 
with an initial population in which each individual is a 
possible route between the source-destination node pair. In 
this work, we use representation, crossover and mutation 
operators similar to those in [14]. The coding of a route is 
a vector of integers where each number identifies a node of 
the route. For the network in Fig.3, the coding of the two 
routes from node 0 to node 5 are vector (0, 1, 2, 5) and (0, 
2, 4, 5).  
 
 
 
 
 
 
 
 
 
 

s i-1 i d 

Ant 
launched 

Update 
pheromone 

Ant killed

 
Fig. 2.  Ant’s moving and updating tasks 

0 1 

3

4 5 

2

Fig.3. Two routes from node 0 to node 5 are encoded as  
(0 1 2 5) and (0 2 4 5). 
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The main steps of the hybrid algorithm are as follows: 
1. Initialization 
Available schemes for generating the first population of 
routes are usually based on random searching [14], which 
is very time consuming for large networks and may incur a 
large setup delay. Here we propose a new approach to 
generating the first population of routes based on the 
mobile agents-based algorithm proposed by S.H. Ngo et al. 
[20].  

Since the algorithm in [20] was designed to find only 
one suitable route between a source-destination node pair, 
we need to modify it such that it can be used to generate 
the first population of P routes (where P is a design 
parameter) for the hybrid algorithm.  

To make sure that the first population of P routes is 
available for a node-pair upon the arrival of a request 
between this node-pair, we equip each node with a new P-
route routing table in addition to the previous pheromone 
table. The P-route routing table contains N-1 entries, each 
of which corresponds to a list of P routes to a destination 
node; these P routes will serve as the first population for 
the future request between the current node and the 
destination node. The role of mobile agents is now two-
fold, they need to continuously update both the pheromone 
table and the P-route routing table on each node.  

When an agent moves from its source to its 
destination, it updates the pheromone tables of 
intermediate nodes in a same way as with Ngo’s approach, 
but it updates the P-route routing table of its destination 
node as follows1: when the agent reaches its destination 
node, it updates the list of P routes corresponding to its 
source node based on the new route it has just found. If the 
P-route table contains less than P routes in the route list 
corresponding to its source node, the new route is directly 
inserted into that list. Otherwise, if the list has already 
contained P routes, the new one will replace an old route in 
the list based on the First-In-First-Out policy. This 
replacement is necessary to ensure randomness in the first 
population of routes. The pseudo code of this process can 
be described as follows:  
{Updating the P-route routing table of destination 
node} 
If the new route is different from any available routes in the route list of 
source node Then   

If number of routes in the route list less than P Then 
                   Insert agent’s new route into the list 

Else 
Replace an existing route with the agent’s new  
route based on the First-In-First-Out policy 

End if 
End if 
                                                           
1  More efficient but complex updating for P-route routing table is 
possible, such as using the smart agents technique [25]. However, this 
paper focuses mainly on how to combine GA and mobile agents 
technique to solve the dynamic RWA problem, so we just adopt a simple 
updating scheme here.  

Since we always keep a suitable number of mobile 
agents in the network, to cooperatively explore the network 
states and to continuously update the pheromone tables and 
P-route routing tables, each P-route routing table will 
contain P routes for each destination after an initialization 
period; those routes are always updated based on the 
current network state and they can serve as the first 
population of P routes upon the arrival of a request. 
2. Determination of Fitness 
The definition of the fitness function is critical for a GA, 
because it determines which individual should be chosen in 
the evolution process. Bisbal et al. [14] define the fitness 
function of a route as the inverse of the cost of the route, 
where the cost of the route is defined as the number of 
hops if there exists at least one common free wavelength 
on all the links of the route; otherwise, infinite. Since this 
fitness function considers only the number of hops in route 
selection, it tends to take the shortest available path for a 
connection request. Previous work [10],[23] indicates 
clearly that this shortest-path based approach usually leads 
to unbalanced link utilization and thus significantly 
degrades network performance.  

To guarantee a good load balance while accounting 
for the gain of using wavelength conversion, we propose 
here a new and more general fitness function for the hybrid 
algorithm. The new fitness function considers not only the 
number of hops on a route, but also the number of free 
wavelengths and the number of wavelength converters 
along the route. For a route having t wavelength converters 
along it, we use the scheme proposed in [24] to divide this 
route into t+1 segments s1, s2 ... st+1 as illustrated in Fig.4. 

 
 
 
 
 
 
 
 
 

For a source-destination node pair, let li be the length 
of route i between the node pair, lmin and lmax be the length 
of the shortest route and the longest route between the 
node pair, respectively, and fwi be the number of free 
wavelengths on route i. If we use fwi

j to denote the number 
of free wavelengths on the jth segment of route i that has ti 
wavelength converters, the fwi can be determined as: 

            ( )j
itji fwfw

i 11
min

+≤≤
=     (1) 

If fwi>0, we introduce the following general fitness 
function fi for route i: 

wci
i

i
i Ct

W
fw
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f ⋅−⋅−+

+−
⋅= )1(

1
1

min

αα         (2) 

Last SegmentFirst Segment 

Wavelength converter 

Fig.4.  A route and its segments 
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where α∈[0, 1] is a design parameter, W is total number of 
wavelengths on a link, ti is the number of wavelength 
converters along the route, and Cwc is the cost of each 
wavelength converter. If fwi=0, we just set fi as zero. In this 
case, route i can not be used by the connection request 
because we can not find any free lightpath along this route.  

The parameter α should be chosen such that the 
shorter route has a higher fitness value.   
Let d = li - lmin + 1, then α should meet the following 
requirement: 

W
W

dWd
⋅−+

+
⋅>−+⋅ )1(

1
11).1(1 αααα  

which is equivalent to: 

ddWW
ddW

)1)(1(
)1)(1(
+−+

+−
>α      (3) 

For a given value of W, the right-hand side of (3) 
increases as d increases. From the definition of d we can 
see easily that 1≤ d ≤ N-2, where the N is number of 
network nodes.  Thus, we have: 

NNWW
NNW

)1)(1(
)1)(1(
−−+

−−
>α               (4) 

The value of Cwc should be chosen to make sure that a 
route with a larger number of wavelength converters will 
always get a smaller fitness value. For a node pair, suppose 
that one route has l1 hops and t≥1 converters and another 
route has l2 ≤ l1 hops but (t+1) converters, then the Cwc 
should meet the following requirement: 

( ) >⋅−⋅−+
+−

⋅ wcCt
Wll
11

1
1

min1

αα  

( ) ( ) wcCt
W
W

ll
⋅+−⋅−+

+−
⋅ 11

1
1

min2

αα  

which is equivalent to: 

( )
W

W
llll

Cwc
11

1
1

1
1

min1min2

−
⋅−+








+−

−
+−

⋅> αα           (5) 

Obviously, the right side of inequality (5) reaches its 
maximum value when l2 =lmin and l1 =lmax. The route of 
l2=lmin has to accommodate at least 2 converters (t+1≥2), 
thus its number of hops l2=lmin is not less than 3. On the 
other hand, the route of lmax has t≥1 converter(s), so we 
have lmax < N – Nc +1, where Nc is the total number of 
wavelength converters on the network. Thus, we have  

lmax – lmin  < (N – Nc + 1) –3 = N – Nc – 2 
Finally, we can get the following general inequality for 
Cwc:  

( )
W

W
NN

C
c

wc
11

2
11 −

⋅−+



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


−−

−⋅> αα    (6) 

 
 
3. Crossover Operator 
The operator can only be applied to a pair of routes that 
have at least one common node, apart from the source and 

destination nodes. This common node is called the 
crossover point. If there are many common nodes, one of 
them is chosen randomly. The offspring is generated by 
interchanging the second halves of its parent, as illustrated 
in Fig.5. 
 
 
 
 
 
 
 
 
 

In the crossover stage, the hybrid algorithm examines 
all possible pairs of routes, beginning with the pairs that 
include the individual with a higher fitness value, until 
either all combinations have been considered or the 
population size becomes twice of the original size. 
4. Mutation Operator 
    To do mutation, a node is randomly selected from the 
route and the selected node is called the mutation point 
(node). Then, the path from the mutation node to the 
destination node is randomly selected from the routing 
table of the mutation node. The path from the source node 
to the mutation node remains untouched. In the mutation 
stage, the mutation operator is applied to all individuals 
whose fitness value is below a given threshold, which is 
chosen from the mean fitness value of the current 
generation. 
5. Reproduction and Stopping Conditions 
    After applying the genetic operators above, the 
reproduction stage selects the P fittest individuals that have 
a higher fitness value from both parents and children for 
the next generation. This process is repeated until the 
stopping condition is fulfilled and the best individual is 
selected. Existing results [2] have indicated that to achieve 
a good performance, a route with wavelength conversion 
should be chosen only if no routes without wavelength 
conversion are available for a request. In the reproduction 
stage of Bisbal’s algorithm [14], only the P fittest 
individuals are selected in a generation without considering 
the wavelength conversion capability in the selection. To 
take the advantage of the wavelength conversion capability 
in evolution, while avoiding the high cost that may be 
introduced by adopting too many wavelength changes, we 
propose here a new reproduction scheme. In this new 
scheme, we first select the P fittest individuals under the 
constraint of ‘without wavelength conversion’ as the 
population for next generation, then we select the l best 
routes among all these routes equipped with wavelength 
converter(s) as the backup route candidates. These backup 
route candidates will be attempted only if none of these P 
individuals can be used for the connection request under 

Parents 0  1  2  5 0  2  4  5 

Children 0  1  2  4  5 0  2  5 

Crossover point Crossover point 

Fig. 5.  Example of crossover operation 
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the ‘without wavelength conversion’ constraint. Our 
simulation results in Section 4 indicate that by keeping 
only the one best route (l=1) among all the routes equipped 
with wavelength converter(s) as the backup route candidate 
in each generation, we can achieve a satisfactory 
performance in terms of blocking probability.  

Let G denote the maximum number of generations 
and S denote the satisfactory cost value of a route between 
a node-pair with its initial value being the cost value of the 
shortest route between the node-pair, then the pseudo code 
of the GA part in our hybrid algorithm can be summarized 
as follows 
{Genetic algorithm} 
t = 0; 
Evaluate fitness values of the first population of P routes; 
Select the best route with wavelength conversion (BR). 
S = shortest distance between (s, d) nodes; 
While ( t < G AND doesn’t exist a route that have length  lower or equal 
S ) do 
 Do crossover & evaluate fitness value for children; 
 Do mutation & evaluate fitness value for children; 
 Select P fittest individuals for next generation; 
 Select the best route with wavelength conversion (BR). 
 S = S + 1; 
 t = t + 1; 
End while 
If  exist routes without wavelength conversion then 

select the best route from P; 
Else 

select the BR;  
End If 

3.2 Complexity Analysis  

Since the time complexity of our hybrid algorithm is 
dominated by its GA part, so our complexity analysis 
focuses on the genetic algorithm. Let N be the number of 
network nodes and Nc be the total number of converters in 
a network, then the complexity of our hybrid algorithm can 
be estimated as follows.  

The complexity of examining all possible pairs in the 
crossover stage is P(P-1)/2 times the complexity of 
examining a pair of routes. This operation includes the 
following steps: search common nodes, create children, 
check if the children are valid routes and check if the 
children are different from their parents. All these steps 
require O(N) time. Moreover, the complexity of evaluating 
the fitness values for the cases with and without 
wavelength conversion is O(PWNNc). Therefore, the 
complexity of the crossover stage is O((P(P-1)/2)N+ 
PWNNc) = O(P2N+PWNNc). In the mutation stage, a 
maximum of P-1 routes are mutated. The fitness values for 
the cases with and without wavelength conversion must be 
evaluated. Thus, the complexity of the mutation stage is 
O(PWNcN). The reproduction stage only involves sorting 
the population by decreasing order of fitness value, so 
complexity of this operation is O(PlogP). In summary, the 
complexity of the hybrid algorithm is: 

O(G(P2N+PW NcN+ PW NcN+PlogP)) 
=O(GPN(P+WNc)). 

3.3 Wavelength Assignment 

 The First-Fit wavelength assignment algorithm [9], in 
which the available wavelength with the smallest index is 
chosen, can achieve almost the same performance as other 
complex algorithms and is very simple to implement, so 
we use this algorithm in our work for wavelength 
assignment. We consider the following two scenarios: 
• If there are no wavelength converters along the selected 

route, apply the First-Fit wavelength assignment 
algorithm directly to the selected route.  

• If there are t≥1 wavelength converters along the 
selected route, we divide the route into t+1 segments as 
illustrated in Fig.4. In the case of full-range wavelength 
conversion, we apply the first-fit algorithm for each 
segment. As for the case of limited-range wavelength 
conversion, we will check all the free wavelengths on 
each segment and try to find a lightpath that satisfies 
the constraint of limited-range wavelength conversion 
and also has the smallest index. 

4. Numerical Results & Discussion 

In this section, we examine the performance of our new 
hybrid algorithm with an extensive simulation study based 
upon the ns-2 network simulator [26] and two typical 
network topologies, as illustrated in Fig. 6. In our 
simulation, we take W=8 and consider the configurations 
of adopting 2 and 5 wavelength converters in each network 
topology. For each converter, we simulate the case of full-
range wavelength conversion and also the cases of using 1 
or 2 wavelength conversion units; here a node with r 
conversion units can convert a wavelength w into any 
wavelength belongs to set [w-r, w+r]. 

To place the wavelength converters properly in a 
network, we use the placement scheme proposed in [24] to 
achieve best benefit from the use of converters. When 
adopting 2 converters, the converters are placed in nodes 3 
and 5 for the NSF network, and nodes 0 and 6 for the EON 
network. When using 5 converters, the converters are 
placed in nodes 1, 3, 5, 10 and 12 for the NFS network, 
and nodes 0, 1, 3, 6 and 8 for the EON network.  

In our experiments, we used a dynamic traffic model 
in which the connection requests arrive at the network 
according to a Poisson process with an arrival rate λ 
(call/seconds). The session holding time is exponentially 
distributed with mean holding time µ (seconds). The 
connection requests are distributed randomly on all the 
network nodes. If there are N sessions over the network, 



 
8 

 

 

then the total workload is measured by N*λ* µ (Erlangs). 
Thus, we can modify N, λ, µ parameters to control 
workloads. For performance comparison, we run each 
simulation based on two routing algorithms: the Fixed-
Alternate routing algorithm (FA) with two alternative 
routes (k=2) and our algorithm.  The GA parameters used 
in our experiment are set as P=16 and G=8 for both the 
NSF and EON networks. For the mobile agents part of our 
hybrid algorithm, we adopt the same set of parameters as 
that in paper [20] for ants generation and pheromone table 
updating. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Determination of α and Cwc 

Table 1 and Table 2 illustrate the sensitiveness of our 
hybrid algorithm to the variation of parameters α and Cwc 
for NSF and EON networks. Both tables clearly indicate 
that by choosing the parameter α properly for both the 
cases of with and without wavelength conversion, we can 
reduce the blocking probability considerably. It is 
interesting to note in Table 1 and Table 2 that by choosing 
α =0.9 according to formula (4), we can get the best results 
in terms of blocking probability for both the cases, with 
and without wavelength conversions.  

The results in Tables 1 and 2 also show clearly that 
when wavelength converters are adopted for both the NSF 
and EON networks, we can get the best results in terms of 
blocking probability by first choosing α =0.9 according to 
formula (4) and then choosing Cwc =0.4 according to 
formula (6). Hereafter, we use the values of α =0.9 and Cwc 
=0.4 in our simulation.  

Table 1. Blocking probability vs. workload for different values of α and 
Cwc on NSF network. F: Full-range conversion. 

GA Parameters Workload (Erlangs) 

α Cwc Nc r 45 54 63 72 81 

 0  0.29 0.63 1.39 2.68 4.29
1 0.23 0.53 1.21 2.34 3.76
2 0.22 0.50 1.08 2.22 3.582 

F 0.19 0.42 0.95 2.12 3.43
1 0.23 0.49 1.16 2.22 3.51
2 0.20 0.43 1.04 2.03 3.37

0.4 

5 

F 0.19 0.39 0.95 1.86 3.09
1 0.27 0.60 1.37 2.54 4.19
2 0.24 0.57 1.27 2.55 3.952 

F 0.22 0.52 1.21 2.43 3.86
1 0.26 0.61 1.33 2.57 4.06
2 0.23 0.55 1.23 2.50 3.91

0.9 

0.1 

5 

F 0.22 0.51 1.20 2.40 3.67
 0  0.32 0.84 1.72 3.18 4.87

1 0.28 0.67 1.65 2.76 4.14
2 0.27 0.64 1.46 2.62 4.032 

F 0.22 0.54 1.28 2.14 3.94
1 0.25 0.57 1.39 2.37 4.13
2 0.24 0.55 1.31 2.30 3.82

0.4 

5 

F 0.20 0.44 1.09 2.14 3.38
1 0.30 0.81 1.70 3.13 4.73
2 0.29 0.75 1.67 2.95 4.552 

F 0.27 0.71 1.64 2.86 4.48
1 0.28 0.73 1.67 3.00 4.69
2 0.27 0.69 1.56 2.77 4.42

0.5 

0.1 

5 

F 0.26 0.66 1.48 2.65 4.17
 0  0.30 0.68 1.53 2.86 4.62

1 0.26 0.58 1.36 2.50 3.89
2 0.25 0.55 1.24 2.36 3.752 

F 0.21 0.47 1.12 2.13 3.61
1 0.24 0.53 1.27 2.30 3.74
2 0.22 0.47 1.17 2.12 3.52

0.4 

5 

F 0.19 0.42 1.02 1.95 3.23
1 0.28 0.64 1.50 2.82 4.39
2 0.26 0.62 1.42 2.69 4.192 

F 0.24 0.58 1.37 2.60 4.03
1 0.26 0.67 1.50 2.78 4.33
2 0.25 0.62 1.41 2.63 4.14

0.1 

0.1 

5 

F 0.24 0.57 1.32 2.52 3.99
 
 

 

0 

1 

2 

3 
4 

5 8 

9 

7 
6 

10 
13 

12 11 

    
(a)                  

  

 

0 

1 
2 

3 
4 

5 

6

7 

8 

9 

10 

11 
12

13 

14 
15 

16 

17 
18 

 
(b) 

Fig. 6 Network topologies adopted in simulation. (a) NSF 
network with 14 nodes and 21 links. (b) EON network with 19 
nodes and 35 links.    
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Table 2. Blocking probability vs. workload for different values of α and 
Cwc on EON network. F: Full-range conversion. 

Workload (Erlangs) GA parameters 
65 78 91 104 117 

α Cwc Nc r Blocking probability (%) 

 0  0.46 0.72 1.07 1.61 2.39 
1 0.45 0.62 0.90 1.45 2.01 
2 0.44 0.57 0.88 1.35 1.98 2 

F 0.42 0.51 0.84 1.28 1.92 
1 0.44 0.58 0.87 1.34 1.97 
2 0.43 0.49 0.77 1.22 1.81 

0.4 

5 

F 0.41 0.48 0.73 1.08 1.63 
1 0.45 0.65 1.00 1.54 2.31 
2 0.44 0.60 0.96 1.54 2.20 2 

F 0.42 0.53 0.84 1.37 2.04 
1 0.44 0.64 0.94 1.53 2.20 
2 0.43 0.56 0.90 1.47 2.18 

0.9 

0.1 

5 

F 0.41 0.53 0.77 1.36 1.98 
 0  0.51 0.76 1.34 1.91 2.73 

1 0.50 0.71 0.99 1.78 2.56 
2 0.49 0.62 0.97 1.65 2.42 2 

F 0.44 0.55 0.95 1.51 2.18 
1 0.48 0.60 0.93 1.50 2.19 
2 0.46 0.56 0.85 1.40 2.07 

0.4 

5 

F 0.43 0.49 0.77 1.20 1.97 
1 0.51 0.70 1.16 1.85 2.69 
2 0.49 0.73 1.15 1.80 2.59 2 

F 0.46 0.69 1.11 1.78 2.51 
1 0.50 0.68 1.13 1.82 2.66 
2 0.46 0.63 1.08 1.74 2.52 

0.5 

0.1 

5 

F 0.44 0.60 0.98 1.62 2.41 
 0  0.49 0.69 1.22 1.72 2.56 

1 0.47 0.66 0.94 1.57 2.22 
2 0.45 0.59 0.92 1.47 2.13 2 

F 0.43 0.53 0.89 1.38 2.02 
1 0.46 0.60 0.90 1.41 2.06 
2 0.44 0.53 0.81 1.30 1.91 

0.4 

5 

F 0.42 0.48 0.75 1.13 1.75 
1 0.48 0.65 1.08 1.67 2.43 
2 0.46 0.65 1.04 1.62 2.32 2 

F 0.43 0.59 0.94 1.53 2.21 
1 0.47 0.64 1.02 1.64 2.39 
2 0.45 0.61 0.97 1.59 2.31 

0.1 

0.1 

5 

F 0.43 0.57 0.90 1.47 2.14 
 

4.2 Performance Comparisons 

Fig.7 and Fig.8 illustrate the comparisons between our 
hybrid algorithm and the Fixed-Alternate (FA) algorithm 
in terms of blocking probability for two and five converters, 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The comparisons in Fig.7 and Fig.8 show clearly that 

blocking probability with the new algorithm is significantly 
lower than with the Fixed-Alternate routing algorithm for 
all the cases we studied, but the improvement from using 
our algorithm decreases as the number of wavelength 
converters increases. For example, for NSF network with 
two wavelength converters and r=2, the blocking 
probability of FA algorithm is about 0.053 while that of 
our algorithm is only 0.022 when the workload is 72. For 
the same set of r and workload in the NSF network with 
five wavelength converters (Fig.8 (a)), the blocking 
probability of the FA algorithm is about 0.041 and that of 
our algorithm is 0.020. Similar behaviors can also be 
observed in the EON network (Fig.7 (b) and Fig.8 (b)). 
When the EON network contains two wavelength 
converters, the blocking probability of the FA algorithm is 
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Fig.7  Blocking probability vs. workload with Nc=2, α =0.9 and Cwc
=0.4.  (a) NSF network. (b) EON network. F: Full-range conversion. 
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about 0.065 when r=2 and the workload is 104, about three 
times higher than the blocking probability of our algorithm, 
which is 0.013. For the same values of r and workload, 
Fig.8 (b) shows that the blocking probability of our 
algorithm is 0.012 when the EON network has five 
converters, and this blocking probability is about two times 
lower than the 0.04 blocking probability of the FA 
algorithm.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs.7 and 8 also show that for both the FA and our 

algorithms, while we can always decrease blocking 
probability by adopting wavelength converters, this 
decrease is inversely proportional to the number of 
wavelength converters and wavelength conversion 
capability of each converter. Actually, by adopting only 
limited-range wavelength converters, our algorithm can 
achieve performance similar to that of using full-range 
wavelength converters. For example, for the NSF network 
with two converters and a workload of 63, the blocking 
probability of our algorithm is 0.0108 when r=2, and this 
blocking probability is slightly reduced to 0.0095 when we 
adopt full-range wavelength converters. For the EON 
network with five converters and a workload of 91, the 

blocking probability of our algorithm is 0.0077 when r=2, 
and we can only reduce this blocking probability slightly to 
0.0073 when we use full-range wavelength converters in 
the network. 
    To show that our new hybrid algorithm results in a 
significantly lower setup delay than the old GA-based 
dynamic RWA algorithm [14], we summarize in Table 3 
and Table 4 average setup time of a request for the NSF 
network and the EON network based on the simulation in a 
computer with Pentium III 600 Mhz processor, HDD 10 
GB IDE and 512 MB RAM. 

Table 3. Average setup time in the NSF network (ms) 

Algorithm\Workload 45 54 63 72 81 

GA 9.72 10.08 10.38 11.39 11.77 

Hybrid 4.72 5.06 5.30 5.82 6.00 

Table 4. Average setup time in the EON network (ms) 

Algorithm\Workload 65 78 91 104 117 

GA 12.70 13.02 13.26 14.43 14.54 

Hybrid 4.57 4.76 4.94 5.13 5.28 
 
    The results in Table 3 and Table 4 indicate that for both 
the NSF and EON networks, the average setup time of our 
hybrid algorithm is significantly lower than that of the old 
GA-based dynamic RWA algorithm. For the NSF network 
with a workload of 72 Erlangs, the average setup time of 
the old GA algorithm is 11.39 ms, which is almost two 
times higher than the 5.82 ms average setup time of the 
hybrid algorithm. When the EON network works under a 
workload of 78 Erlangs, the average setup time of the old 
GA algorithm is 13.02 ms, which is almost three times 
higher than the average setup time of the new hybrid 
algorithm (4.76 ms).   

5. Conclusion  

In this paper, we proposed a hybrid algorithm for dynamic 
RWA in optical WDM networks with sparse wavelength 
conversion. By combining the mobile agents technique 
with an appropriate genetic algorithm, we have produced a 
hybrid algorithm that is able to reduce the time consuming 
process of generating the first population of routes while 
retaining the GA’s attractive ability to achieve a 
significantly low blocking probability. To take full 
advantage of wavelength conversion, we also propose a 
new reproduction scheme and a more general fitness 
function that simultaneously takes into account the path 
length, number of free wavelengths, and wavelength 
conversion capability in route evaluation. Extensive 
simulation results show that the new hybrid algorithm can 
achieve a good load balance and always has a lower 

40 45 50 55 60 65 70 75 80 85

0.00

0.02

0.04

0.06

0.08

0.10

0.12

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Load

 FA, 
 FA,Nc=5,r=1
 FA,Nc=5,r=2
 FA,Nc=5,full
 GA
 GA, Nc=5, r=1
 GA, Nc=5, r=2
 GA, Nc=5, F

 
(a) 

60 70 80 90 100 110 120
0.00

0.02

0.04

0.06

0.08

0.10

0.12

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Load

 FA, 
 FA,Nc=5,r=1
 FA,Nc=5,r=2
 FA,Nc=5,full
 GA
 GA, Nc=5, r=1
 GA, Nc=5, r=2
 GA, Nc=5, F

 
(b) 

Fig.8  Blocking probability vs. workload for Nc=5, α=0.9 and 
Cwc=0.4.  (a) NSF network. (b) EON network. F: Full-range 
conversion. 
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blocking probability than the promising Fixed-Alternate 
routing algorithm for both networks, with full-range 
wavelength conversion and with limited-range conversion.  
Our simulation results also indicate that in a WDM 
network with sparse wavelength conversion, limited-range 
wavelength conversion can actually achieve a performance 
level similar to that of full-range wavelength conversion 
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