IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011 1

Vulnerability Assessment for Wireless Mesh
Networks Under Probabilistic Region Failure Mode

Jiajia Liu, Non-Member, IEEEXiaohong JiangSenior Member, IEEBEHiroki Nishiyama,Member, IEEE,
and Nei Kato,Senior Member, IEEE

Abstract—Wireless networks in open environment are exposed and Vaidya considered the problem of reliable broadcast in
to various large region threats, like the natural disasters and a wireless network where each node can fail independently.
malicious attacks. Available work regarding region failures gen- In [9] Yu and Zhang proposed R-Sentry, a novel scheduling
erally adopt a kind of “deterministic” failure models, which failed - ’
to reflect some key features of a real region failure. In this a_Igorlthm for S_ensor networks that attempts to_bound tr_'e ser
paper, we provide a more genera| ”probabi"stic" region failure vice loss duration due to node failures and pl‘OVIdeS coatisu
model to capture the key features of a region failure and apply surveillance coverage even when a subset of sensors fal. Th
it for the vulnerability assessment of wireless mesh networks. fast restoration and protection against link and node riegiu
To facilitate such assessment, we develop a grid partition-based have also been explored recently, see, for example [10}-[13
scheme to estimate the expected flow capacity degradation from a Most of ilabl twork " b'i't tudi based
random region failure. We then establish a theoretical framework 0st ol avallable ne qu surylva ity studies are a_se
to determine a suitable grid partition such that a specified ON one common assumption: failures are random and inde-
estimation error requirement is satisfied. The grid partition pendent, which failed to reflect many real scenarios. The
technique is also useful for identifying the vulnerable zones of a real-world disasters or attacks, like the earthquake,idame,
network, which can guide network designers to initiate proper physical bomb explosion or electromagnetic pulse (EMP)

network protection against such failures. The work in this paper - . .
helps us understand the network vulnerability under a region attack [14], [15], always happen in a particular geographic

failure, and can facilitate the design and maintenance of future location and result in the so-calleegion failure ( [16], [17]).

highly survivable wireless networks. Under a region failure, multiple network components may
Index Terms—Wireless mesh networks, region failure, network simultaneously corrupt but they are geographically ceteel
vulnerability. and constrained within a specific region. Thus, it is imparta

to take into account the geographical information of neksor
in the study of such failures, and some research has been

conducted to understand the impact of region failures oeadvir

In recent years, the wireless mesh networks have increﬁﬁ'ckbone networks ( [L7]-[19]). In this paper, we focus on

ingly gained interests in both academia and industry. ASge yyinerability assessment of wireless mesh networkemund
promising and flexible networking technology, the wirelesg onqom region failure.

mesh networks are expected to support data communication§nere are few related works considering region failures
for some important and mission critical applications, ltke  cije wireless networks. Seet al. explored the region-
disaster relief and battlefield headquarter constructidne 5564 connectivity issue in wireless networks and showed
to the nature of W|_reless communications, the nodes thg{g,; to adjust the transmitting power to maintain a region-
are exposed to various hazards [1]-[3], such as the natyakeq connectivity in presence of region failures [16]][20
dlsgsters and mahmous network attack; _[4]' [5]: Thusl,p-imi This work was further extended into multiple region failure
actlye evaluation of network vulnerability gnd survivitlyil model (MRFM) [21], where the failures are no longer confined
against network failures becomes essential for the desigfin a4 single region. In [22] Xt al. adopted the percolation
and maintenance of future highly survivable wireless me?ﬁ‘eory to characterize the spread of correlated failuréarige
networks.. ) o . . wireless networks, and analyzed the condition under which a
In the light of failure _|neV|tab|I|ty and its _detrlmental BO initial node failure will/will not permeate the whole netvo
sequences, many studies have been dedicated to the degighi et al. in [23] addressed the problem of building data
of failure-resilient networks. Stefanakat al. examined the redundancy with the minimum communication cost in a sensor

routing issue in networks that require guaranteed reltgbil network, where many nodes may simultaneously fail due to a
against multiple link failures in [6]. In [7] Awerbuclet al. ;5 h attack or river overflow.

proposed an on-demand routing protocol for ad hoc wire-|; is npotaple that the region failure models adopted in
less networks, which provides resilience to byzantinaife8 e\ious region failure-related studies (for both wirecd an

caused by individual or colluding nodes. In [8] Bhandatj, eless networks) can be regarded as a kind of “deter-
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simple and easy to use, neglected two key facts of real-world Failure Probability P
region failures: network components can only be destroyed Y2
with certain probability (not always probability 1), and mo 22

importantly, such failure probability of a network compane p:
M

tends to monotonously decrease as it is farther away from

the region center. Based on this observation, we believe a i
“probabilistic” model addressing these two key featurel wi . r ,Z er
be much more suitable for network vulnerability study. Iisth

paper, we consider such a probabilistic failure model amdyap

it to assess the vulnerability of wireless mesh networke Th y /

main contributions of this paper are as follows:

« We provide a general and more realistic probabilistigy 1. probabilistic Region Failure Model
region failure model to capture the key features of region
failures, which covers the deterministic failure models in
[16], [18] as special cases. and such failure probability tends to monotonously de@eas

« Based on the new failure model, we formulate the exs it is farther away from the attack center.
pected flow capacity degradation problem in wireless To emulate these common failure behaviors, we introduce
mesh networks as a network zone partition problemere a general probabilistic region failure model.
which is hard to solve for a large network. We then Definition 1: (Probabilistic Region Failure Model) con-
develop a grid partition scheme to efficiently estimate theists of a set ofA/ consecutive annulus, defined b/
expected flow capacity degradation from a random regi@ancentric circles with radius;, i = 1,..., M, as illustrated
failure. The grid partition technique can also help us td Fig. 1. A network component (like a network node) falling
identify the vulnerable zones of a network. within i-th annulus will fail with probabilityp;, where annulus

« A theoretical framework is further established to analyzgre sequentially numbered from the failure center. To mimic
the estimation error from using the grid partition techthe above behaviors, the following properties hold far

nigue, which can guide us to determine a suitable grid _ e probabilityp; is monotonously decreasing, i, >
partition such that a specified estimation error require- Pistyi=1,...,M—1. N
ment is satisfied.

« We demonstrate through extensive theoretical and simu-
lation studies that neglecting probabilistic behavior of a
region failure may significantly over-estimate or under-
estimate its impact on network vulnerability.

- The region failure is only confined within the circle area
of radius r;, beyond which the failure probability is
regarded as 0.

It is noted our probabilistic region failure (PRF) model is
different from the previous “deterministic” failure modein

The rest of this paper is outlined as follows. Section Il ing,e senge that: 1) it is more general as it covers the former
troduces the general probabilistic region failure model tre single circular model in [16], [18] as a special case ; 2) it

problem formulation Olf expected flow capahcny degradatiofy ,ore realistic as it reflects the monotonously decreasing
IE Section IlI, wefdeve op a grid partition scheme to estgnaleng of fajlure probability for real region failures; 3) it

the average performance degradation caused by a randgfle fiexible and can be configured with different parameter
region failure, and also provide the theoretical analysis %ettings to adapt to various realistic scenarios

the estlmaglon error fr?m usllng suc?dgnd ;i]artmon. qu:za Without loss of generality, in the following we focus on
presents the numerical results to validate the new regi the simple two-annulus PRF model wif — 2, p, — 1 and

model .and thg grid partition scheme. Finally we concluds thjlo2 — p to simply the presentatioh
paper in Section V.

[I. MODEL AND PROBLEM FORMULATION B. Problem Formulation

In this section, we first define a general probabilistic ragio Based on the above PRF model, we will assess the vulnera-
failure model, then formulate the expected flow capacif§ility of a wireless mesh network under single random region

degradation from such a failure as a network zone partitiéailure. In this paper, we choose to explore the impact obreg
problem. failure upon some specified key flows (like some mission

critical flows), and take the expected flow capacity degiadat
as the network vulnerability metric Here, the expected flow
capacity degradation is measured over all concerned flows
er region failure happens but before initiating the roetw

A. Probabilistic Region Failure Model

It is notable that one common feature of real-world attac
(like the physical bomb explosion, E-bomb or EMP attack
?S that the power of such an attack grqdually attenuates fromgor 4 small area around the region failure center, the faituobability
its center area to outer area. Due to this common feature, thete can be high enough to be approximated as 1.

. . 2 0 ik
region failures caused by such attacks always share two copiSome other metrics can also be adopted for network vulneabifalua-
behaviors. i.e.. a network component near attack Cer‘Eon, like the_vz_—:-rtex based degree centrality [24], the_ apenal O-D pairs or
mon benha y 11T p Q{hs, the minimum shortest paths [25]-[27], the criticatesdedge [28]-[30]

will fail with high probability (may not always probabilit§), and pairwise connectivity [31].
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can be as high a@((M +1)%) in the worst case. Also, finding
all these RFL zones and calculating their area involve aflot o
very complicated geometric operations. In the next secatien
present an efficient scheme for the estimationvof

Ill. ESTIMATION OF ECD

In this section, we first introduce a grid partition-based
scheme for the estimation of ECD, then provide a theoretical
analysis on the estimation error from using such grid partit
technique.

A. Grid Partition-based Estimation for ECD

Without loss of generality, we assume that the network
coverage area is alhx b square. We apply a grid to evenly
Fig. 2. RFL zones{Z:} and their impactsw;} of a flow divide theb x b square inta: x ¢ small cells{S;,j = 1,...,¢*}

with side lengtha = b/c each, as illustrated in Fig. 3. Based

on this grid partition, one simple way to estimate the ECD of
recovery mechanism, so it indicates the possible worst c#ggne concerned flows is to regard each cell here as a “RFL”
performance degradation after a region failure. This @bl zone and take the impact of its center point as the impact of
can be defined as follows. this cell. In this way, we can get an estimation of ECD based

Expected Capacity Degradation Problem: For a given ©n the (1).
network and the routing/capacity information of some sfgieti ~ Suppose that the set of concerned flows e,k =
flows in it, calculate the expected capacity degradatiomese 1,--- K}, and let(z},y7) be the central point of, cell S,
flows under a random region failure. and |et’LUfk (x, y) be the induced impaCt on floy\’k when PRF

To solve the Expected Capacity Degradation (ECD) pro§enter is at pointz,y). Then the grid partition-based scheme
lem, one straightforward approach is to first apply the PHpr obtaining an estimatiod of ECD can be summarized as
model to partition the overall network area into some digjoi the following Algorithm 1.
and uniform region failure location (RFL) zones. _ _

Definition 2: (RFL Zone) A RFL zone is a network sub- Algorithm 1 ECD Estimation:
area that any PRF with center falling within it will alwayslnput: The network grid partition information, flow distribu-
induce the same impact (i.e., the same flow capacity degratian and failure model parameters;
tion) to all the concerned flows. Output: ECD estimationa;

For a simple scenario of having only one flofv with
capacityCy and 3 nodes, such RFL zone partition is illustratedl. @ < 0;
in Fig. 2, where the network region is divided into different2. for £k =1 to K do

Wy =W,=w5=C; w,=ws=w,=(1-(1-p)?)-C;
w;=(1-(1-p))-C;  Wg=Wo=w;4=p-C;

RFL zones{Z;} with impacts{w;}, i = 1,...,10. 3. for j =1toc? do

Based on the area of each RFL zone and its impact oa. calculatewy, (27, y7);
flow capacity degradation, we can easily evaluate the dveras. W=+ (a2/bg) SWy, (zj,y}‘);
ECD of all concerned flows under a random region failures. end for

For a network with coverage arég suppose we have already 7. end for
divided network region into different RFL zongd<Z;} with 8. return w;
different areaqd|Z;|} and impactgw;}, then the overall ECD
w can be determined as

In the Algorithm 1, we take the central poirit},y;)
B | Z+| of cell S; as the sampling point and simply use its impact
w= Z Tz (1) wy, (x3,y;) as an approximation of the impact of all other
7 points in .S;. Since each cell here may not be a RFL zone,
Here|Z;|/Z is just the probability that the PRF’s center fallsuch approximation will cause an estimation error between
within the RFL zoneZ;. w and w. For a flow with two nodes and capacityy, a
To apply (1) for the evaluation of ECD, we need to fingbartition cell S; that intersects with three RFL zones there
out all the RFL zones. Such RFL zones depend on maisyillustrated in the Fig. 3. Notice that the three RFL zones
factors, like the node topology distribution (e.g., distn intersecting withS; have distinct impacts of Op - C; and
among nodes, number of nodes), flow distribution (routing — (1 — p)?) - Cy, respectively. Thus, talking the impact
path for each concerned flow, number of nodes per flow); Cy of the center(z},y;) of S; as an approximation of the
and also parameter settings of the PRF model &nd r;, impacts of all other points (can be 0 6t — (1 — p)?) - C¢
i=1,..., M). Suppose the number of nodes of all concerndtere) will induce estimation error in the calculation of ECD
flows is N, then we can see that total number of RFL zones.
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The (6) says that the estimation errar, for flow f; is
upper bounded by the sum of corresponding estimation error
introduced in each cell. If we us@f}j to denote the maximum
difference between the average impact (fir) of any two
points inS,, i.e.,

AP = — mi 7
P (wflylggsj{wfk(wvy)} (Igl)lgsj{wfk(x,y)} @)

then we have
1 * %
)b7 (e.)es (wfk(xj7yj) —wfk(x,y))dxdy’
z,Y j

B 1 * *
| = ﬁ// ‘“’fk(xj’yj) —wfk(%y)’dwdy
(z,y)€S;

B case 1 cell case 2 cell 1 s
£ case 3 cell case 4 cell < b—z // Afi dxdy
(z,y)€S;
Fig. 3. lllustration of network grid partition and ECD estitiaze error for a 1 S;
flow with only two nodesA and B. The cells of cases 2 and 3 will introduce = ?Aﬂ (8)

ECD estimation error while the cells of cases 1 and 4 will not.

Combining (4), (5), (6) and (8), we have

In the next subsection, we provide a theoretical model on the K K< 5.
possible estimation error that the Algorithm 1 may introgluc As ZAfk = Z Z cﬁAf;i ©)
in the estimation ofv. Such a model can help us to determine k=1 k=1j=1
a suitable grid partition (i.e., a suitable cell sizesuch that ~ The (9) shows that we can control the overall estimation

a specified estimation error requirement is satisfied. error A by properly selecting the number of celts (or
equivalently the sizew = b/c of each cell) in the grid-
B. ECD Estimation Error Modeling partition based ECD estimation. Lét, denote the capacity

of concerned flowfy, k& = 1,..., K, then we can define the
following ECD estimation error bounding problem.

ECD Estimation Error Bounding Problem: For an error
requirement > 0, to determine a low bound on the number
of cells ¢, such that where > ¢. we can always guarantee

K
w = bl? > / / wr (. y)dedy  (2)  that

Based on the grid partition introduced above, the EGD
and its estimationv for the set of concerned flowgfy, k =
1,..., K} can be expressed as

k=1 j=1" 7 (@y)€S; K 2 ) K
S
ko ASYY Zai<eda ao
D3 3 | TGN AE R C =151 =
k=1j=1" 7 (@y)€S; The (10) indicates that to determine the lower boundbr
If we useA to denote the estimation error af, then we @ givene, we need to identify each cell that has non-zero term
have A}l (i.e., the cell that introduces estimation error) and atso t
. determine the total number of such cells, as discussed in the
A = [w— b following subsections.
K 1 c?
<3 |= ) — ) dad ] o o
- ; ’b2 ;//(x’y)esj (wr (25, 97) — wp (x,) ) dady C. Identification of Cells with Estimation Error

(4) Based on the simple two-annulus PRF model introduced
in Section IlI-A, we can easily see that the area around a
e network node can also be divided into two same annulus (as
than the sum of estimation error for the ECD of each flowy, v in Fig. 3), where a PRF with center falling within the
If we useAy, to denote the estimation error for the ECD Ofner annulus (resp. the outer annulus) will cause the node
flow fi, then we have to fail with probability 1 (resp. probabilityp). Thus, for a
1 & given flow fi,, whether a cell will introduce ECD estimation
Ay, = ‘b—Q Z// (wy, (25, y5) — wy, (z,y))dxdy‘ error for this flow depends on how the cell intersects with
j=17 7@ y)eS; the boundaries of the outer annulus and inner annulus of all
(5) the nodes of this flow (hereafter, we call these annulus as
? 1 the annulus of this flow). To characterize such intersection
<> ‘b—Q // (wy, (x5, y;) —wy, (z, y))dxdy‘ between a celb and the annulus of flow,, we define a four-
j=1 (z:9)€S; tuple (myg, nk, h, g ), which indicates that the cell partially
(6) intersects with the boundaries af; outer annulus andy

The (4) indicates that the overall estimation erfois no more
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inner annulus of flowf, but it completely falls within other a:ﬁ
ny outer annulus angy inner annulus of the flow.
Based on the four-tuplémny, ny, hy, gx) for flow f and a —
cell S, the Ai defined by (7), i.e., the maximum difference ] ||
between the average impact (gp) of any two points inS, ] [ )
can be determined as — \ o /N8 ’
0 case 1: ifgy, > 1, ] AN \
n I E 1 l
Cr-q" gy JI )
case 2: ifgy =0,hy > 1
A?k = ng Ofe =1 (11) A
Cl - g™ - (1_qu) \
case 3: ifgy =0,h =0,my, > 1, mn
0 case 4: ifgy = 0,hy = 0,my = 0.
. . . Cell &Total Number: uy |
whereg = 1 — p is the non-failure probability of a node & 7, 7,

falling within the outer annulus defined by the simple two-
annulus PRF model in Section Il.A. The (11) indicates ciearkig. 4. Illustration for the cell counting, where the distanbetween the
that only the cells of the cases 2 and 3 will introduce EChpdesA and B is fixed asdmaz, and the network is partitioned with cells
estimation error for the flowfy, as illustrated in the Fig. 3. °f Sizea each.

Let ux(A) denote the total number of cells of the case

V\;itf;]nk =X\ ahﬁ letvy.(8,7) genote thehtOtalh””mber”Of CellShe inner annulus and outer annulusofind B, respectively.
of the case3 with my, = 3 andn;, = 1, then the overall ECD 1pop the cells that may introduce ECD estimation error to the
estimation error for the flow. is given by node A can be defined by the following variables:

< 1 s o 71: the number of cells partially intersecting with the
Z gAfZ boundary of CZ,, but not completely falling within
=1 ctucg,.
Ck A 8 o Uy: the number of cells partially intersecting with the
= (D wmNA+ DD w1 -4")g " Srsecing Wi
c <A>1 BT A0 ) (té(l)gundary ofCZ,,, and completely falling withinC;;, U
(12) out*

o u1: the number of cells partially intersecting with the
boundary ofCZ. but not completely falling within the
D. Counting the Cells with Estimation Error ctucg

out*

The (10) and (12) indicate that to solve the overall esti- ¢ u2: if @1 > 0, uy is defined as the total number of
mation error bounding problem, we need to determine the cells that partially intersect with the boundary Gf),

values ofuy(\) andv,(3,~) for each flow f, with A > 1, and completely fall within theC;? U CZ,,. In the case
3 > 1 and~y > 0. However, determining the exact value of @1 =0, 4y is the numger of cells that partially intersect
u(\) and v (8, ) for each flow f;, is still a very difficult with the boundary ofC7;, and not completely fall within

task, which involves the complicated geometric operatimn t the CJ,.
identify the relationship (intersecting or containing)tween For the example shown in Fig. 4, we can easily prove that
cells and annulus boundaries of a flow. We instead provitee,, @,, v; andv, there are given by the formulas in Table |
here a tractable upper bound to efficiently approximate tiaad .
ECD estimation error in (12). Remark 1:The values ofiq, 2, 71 and, in Tables | and
Notice from the Fig. 3 that the effect of a PRF upon # are only determined by the network parametéfs,., ™
network node is defined by the two annulus around the nodgdr, and thus independent of flows.
and our basic idea here is to first derive a general “nodd-leve Remark 2:For the tagged nodel and its neighbor node
estimation error (NEE)” for each node of floy, based on B in Fig. 4, the boundaries of their outer annulus are not
the intersection between its two annulus and cells aroued fftersecting with the network boundary. Thus, the resuits i
node, then apply the NEE of each node to get a general bourgbles | and Il represent the maximum valuesigf @,, o1
on the ECD estimation error of this flow. and os.
To get a general NEE for each node, we need to identify Based on thei;, i, v; and o, in the Tables | and II, we

all the cells around a node that will “contribute” to thecan defineNEE;, (i.e., the NEE for each node of flowfy)
ECD estimation error. For this purpose, we consider a tagggel

node A and one its neighbor nodB that is d,,.., away, as C

illustrated in Fig. 4. Here thé,,,. is defined as the maximum NEE), = —2’“ - (t1q + u2q® + V1p+V2pg)  (13)
distance between any two neighbor nodes of any flow, which is ¢

controlled by the maximum communication range (or power) We now show that theVEE), can be used to establish
of the network. We us€: andC: ,, CE andCZ,, to denote an upper bound for the overall ECD estimation error (12)

out’ out
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TABLE |
U1 AND U2 3) When’l"g -1 < dma:z: < ro + 171,
8
Amax Uy L7 Ce = K
e S 7311 &7, <31, o YA emb p—q Ck
or dygx £ 21, &1, > 31 a alm 2n K
_ 2y 2 2 .2
21y <dypgy ST, —11 &7, > 31 0 4[71 % § :Nka rl(w—arccosw)(l —p)
2n] 2111 dma 1t =1t 2dmazT1
T =1 <dmax ST2+Ty 4 [7] —uy |4 IT]ECOS BT R— k=1 max
max'1
n 2 2 .2
dipaz > 15471 4[;] 0 + 7y arccos —dm(w Rl Sk (1- p)2
2d7naz7ﬂ1
d
TABLE Il + 7w — parccos ——=) ~p) 17)
T1 AND g 2
4) When?"Q +r < dma:v S 27‘27
dmaz U1 U2 K
dmaz < 27 4[2?721 — T 4(%]%arccos '@”Ta; _ 8 Z N.C 1_
a e 1 C k=1
d
+ ro(m — parccos %) ~p> (18)
T2

of the flow fi, as summarized in the following lemma (See 5) whend
Section VI for the proof). K

Lemma 1:Given the PRF model parametersandr,, cell . = 8 NGy (71(1 = p) +1ep)  (19)
side lengtha, then for any flowfy, 1 < k£ < K, we have eb Zszl Ch, Z ( i )+ )

maz > 272,

k=1

IV. NUMERICAL RESULTS

Ck
= (Zuk<)\)q)\ + Y w(B) (- QB)QV) In this section, we first verify the efficiency of the ECD
Azl Bz1,720 estimation scheme through simulation, then apply it to ssse
< Ny - NEE, (14)  the network vulnerability under the new PRF model.

A. Simulation Setting

We developed a simulator in C++ to simulate the impact
of a random PRF upon on some specified flows. Similar to
- . the settings used in [16], we consider a random network with

By combining the (10), (12) and (14), we can easily ProV& nodes, in which the coordinates, (y) of each node are
the fp!lowing theore.m regarding a lower boungof c for a uniformly generated in 2000 x 2000 m? field. We randomly
specified error requiremest generate eight flows, where the number of nodes per flow is

Theorem 1:For a specified error requirement- 0, we can  drawn randomly irj3, 5], each link distance is drawn randomly
determine a lower bound. for ¢ as follows such that when in [100,400] m, and the flow capacity is drawn randomly in

E. A Lower Bound for Estimation Error Guarantee

¢ > ¢, the (10) always holds. [3,10] Mbps. The final network graph for simulation is shown
1) whend,,qp < 190 — 11 & 19 < 371, OF dppee < 2r; & In Fig. 8a, in which the maximum distance between any two
ro > 311, neighbor nodes of any flow is determineddas,. = 360.555.
The metric adopted for performance evaluation is the aeerag
8 impact ratio (AIR), defined as
Ce = K o w
embd 1 Ch AIR = —7—— (20)
K d. Zk:l Cr
X Z N Cy (7‘1(77 — arccos %)(1 -p)° The simulated AIR was calculated as the average value of ten
k=1 ! batches of simulation results, where each batch consistmef
4 ro(r — parccos d;r;aw) ) ) (15) million random and independent simulations.

B. PRF Model and “Deterministic” Failure Models

2) when2ry < dpmar <712 — 11 & T9 > 311, To illustrate how the general PRF model is different from
the “Deterministic” failure models, we first conducted a sim

K ulation under the general parameter setting (for, p2). The
ce = + ZNka (mr(l —p)? Fig. 5 illustrates the variations of AIR with the parameters
emb 1 Cr 15 (r1,72,p1,p2), Where the settinggp, = 1,p2 = 1) and
Ao (p1 = 1,p2 = 0) correspond to the “deterministic” model
+ ro(m — parccos o ) - ) (16)  gcenarios.
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038 TABLE Il
FAILURE MODEL PARAMETER SETTINGS

r=100
03 p1=1p2=1

P 1 [ T2
o case 1] 0.50 | 50 | 100
case 2| 0.35| 80 | 200
P1=085,p2=075 case 3| 0.25 | 100 | 500
015 case 4| 0.75 | 180 | 200
case 5| 0.15 | 200 | 600
01 p1=085p2=025 case 6| 0.10 | 200 | 700

02

average impact ratio

0.05 p1=1p2=0

TABLE IV
1 15 2 25 3 35 4 45 5 COMPARISON BETWEEN SIMULATION AND ESéI'IMATION RESULTS FOR
outer circle radius [ inner circle radius ( r2 /1) MODEL VALIDATION y C = Z Ck

(a) Average Impact Ratio vs:2 /71

k=1

w/C w/C A/C Ce

case 1| ¢=0.01 0.0201332| 0.0200634| 6.98e-005| 126
e = 0.005 | 0.0201248] 0.0201419| 1.70e-005| 252
case 2| ¢=0.01 0.05511 | 0.0550707| 3.93e-005| 199
e = 0.005 | 0.0551315| 0.0551305| 1.03e-006| 398
case 3| €=0.01 0.160276 | 0.160349 | 7.28e-005| 284
€ =0.005 | 0.160279 | 0.160315 | 3.62e-005] 569
case 4| ¢=0.01 0.106664 | 0.106649 | 1.47e-005| 295
e =0.005 | 0.106683 | 0.106636 | 4.70e-005] 590
case 5| €=0.01 0.193783 | 0.193646 | 1.36e-004| 350
e = 0.005 0.193819 0.19378 | 3.96e-005| 701

005 case 6| €=0.01 0.189801 | 0.18987 | 6.90e-005| 346
1=1.p2=0 e =0.005 | 0.189838 | 0.189847 | 9.57e-006] 693

60 80 100 120 140
inner circle radius r1

1=1,p2=1
r2/r1=3 P P

pl =085 p2=0.75

average impact ratio
=)
o

p1 =005 p2=0.25

(b) Average Impact Ratio vs: our scheme could provide an efficient estimation for the AIR,
Fig. 5. PRF Model and “Deterministic” Failure Models. and the induced overall estimation error is always less than
the specifiect. It is also notable that for each test case here,
the actual error between the simulation and estimationlteesu
The results here indicate clearly that the “deterministiGs several orders smaller than the specifiedhis very small
models, although simple and easy to use, may result dferall estimation error (and thus a very safpare due to the
a significant overestimation or underestimation of networﬁénowmg facts. The first factor is that the maximum possibl
vulnerability. For example, when we set/r1 = 3.6 in  egtimation error (rather than the real estimation erroaih
Fig. 5a, we get an average impact ratio ®102 with the gl js adopted in the evaluation of the overall ECD estiorati
setting of p; = 0.95,p, = 0.25), while this ratio decreasesgrror (Eq. 12). The second factor lies in that the estimaibn
to 0.032 with the setting of ¢, = 1, p2 = 0). Regarding the he number of error-inducing cells in (13), in which only the
results of fixed /ry in Fig. 5b, we can see that when= 80, maximum values fofi, and7, are considered, while the errors
the average impact ratio is estimated (a$16 for the case gf gther cells are approximated through and v. The last
(p1 = 0.95,p2 = 0.75), and this estimated ratio increases tgactor js that the distance between any two neighbor nodes is
0.141 when bothp, andp, are regarded as 1 there. It is alsgﬂ\,\,ayS regarded ag,,., in the Theorem 1, which helps us to

interesting to note that as (or ry/r) increases (and thus derive an unified and closed form formula far but leads to
failure region becomes bigger), the estimation gap betwegp overestimation for the parameter.

the probabilistic model and the corresponding “deterntitiis
ones tends to increase sharply, and such gaps can be
significant if the probabilistic feature of region failure mot
properly “rounded-off”.

The above results indicate that our ECD estimation scheme
AH¥ the related theoretical framework for estimation error
bounding, although may lead to a “conservative” estimation
for the overall ECD, are simple and efficient. To apply such
scheme, we just need to divide the network area intoc

C. ECD Estimation Scheme Validation cells and simply use the central point of each cell to cateula
To verify the the ECD estimation scheme, further simulatiofte ECD metric, which avoids the complicated geometric
was conducted under the simple PRF modelf<£ 1,p, = Operations for the identification and area evaluation of all

p). The parameters used in the simulation are summariZ8fL zones. As long as the cell sizeis small enough (or
in Table Ill, where each case of parameter setting is cor@quivalently the number of cells is big enough such that
sponding to one individual case discussed in the Theoremcl> c¢), our scheme can always result in a very efficient
We verified the ECD estimation scheme under two err@stimation for the ECD with an error upper boundedeby
requirements ot = 0.01 ande = 0.005. The corresponding  Hereafter, the numerical results in performance evaloatio
simulation results and estimation results from our scherae are obtained based on our ECD estimation scheme, where
summarized in the Table IV. the simple PRF model ofp{ = 1,p2 = p) and an error
The Table IV indicates clearly that when we set> ¢., requirement ok = 0.005 are assumed.
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Fig. 8. Network topology and vulnerable network zone disttion estimated
by our scheme.
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Fig. 6. Average Impact Ratio vs. Failure Probability

more careful observation of the Fig. 7 indicates that eveh wi
a PRF ofr; = 360 (roughly same as thé,,,, = 360.555)
and ry/ry = 2.4, we may achieve an oveF0% reduction
(i,e.,AIR > 0.5) to the overall capacity of the concerned
flows.

1

09
08
07
06
05

04

E. Vulnerable Network Zone Identification

average impact ratio

03
02 In our grid partition-based ECD estimation scheme, we
divide the whole network area equally intox ¢ cells, then
L T T take the central point of each cell as the sampling point and
outer Gicie radius /nner circle s (12/11) use its impact to approximate the impact of the cell. Thus,

one attractive application of the estimation scheme is ithat
helps us to identify the geographical distribution and sife
the vulnerable network zones.

For the network adopted in our study (Fig. 8a) and the
setting of ¢; = 200,7, = 600,a = 40), the vulnerable

The Fig. 6 shows the relationship between the AIR and thgtwork zone distribution estimated by our scheme is illus-
failure probabilityp under different settings of,/r1, where trated in Fig. 8b. Based on such vulnerable network zone
the settingr»/r1 = 1 corresponds to a “deterministic” model.distribution, one can also easily identify the most vulidza
We can see from the Fig. 6 that with = 100, a non- network zone(s), i.e., the zones in which each cell thergfres
negligible AIR difference betweern /r1 > 1 (r2/r1 =2,4,5,7) piggest impact to the network flow capacity. Such vulnerable
andry/r;y =1 can be observed even for a very small valugetwork zone distribution and the most vulnerable network
of the failure probabilityp. For example, whem = 0.2, the  zone information will be helpful for network designers td-in

AIR of the scenaria/r1 = 2 is 0.050, which is nearlyl.56 tiate proper network protection strategy against regidoris.
times as that of the scenarig/r; = 1 (0.032 there); for the

case thatp = 0.35, the AIR of the first scenario0(062) is

nearly 1.94 times as that of the later cas&@(32). The Fig. 6

also shows clearly that as or p increase, the AIR difference In this paper, we proposed a more realistic probabilistic

betweenry/r;1 > 1 andry/r; = 1 increases sharply. This region failure (PRF) model to capture some main features of

results indicates that even for a very small failure prolitghp, 9eographically correlated region failures, and then dxped

the probabilistic outer annulus part of a PRF may signifiyantd framework to apply the PRF model for the vulnerability

affect the overall network capacity. assessment of wireless mesh networks. Our results indicate
When failure probability is set gs = 0.5, the relationship that neglecting some key properties of real region failwass

between AIR and-,/r; is illustrated in the Fig. 7. We can result in a significant overestimation or underestimatibnet-

see from the figure that in generaL ﬁlsincreases' the AIR work Vulnel’ability, which may mislead network deSignerS in

becomes more sensitive to the variation of the ratigr,. initiating proper and cost-efficient network protectioraatt

For example, whem, /r, varies from 1.6 to 3.6, the AIR for such failures. It is expected that our work in this paper will

the scenario of; = 100 varies from 0.056 to 0.159 and thecontribute to the future network design and planning agains

AIR for the scenario of-; = 200 varies from 0.162 to 0.404, Possible region failures.

respectively. The results here also show clearly that fer th Some possible extensions of this work are:

caser; = 450, the AIR is not sensitive to the variation of « Routing issue: Notice that our framework in this paper

ro/r1 @anymore as it increases beyond the pointr; = 4.4. can be applied to evaluate a network with a given routing

This is because that when andr, are large enough, the PRF strategy. How to apply this work and the corresponding

starts to cover the whole network area and thus all the flows. A results (like the vulnerable network zone distribution

0.1

Fig. 7. Average Impact Ratio vea/71.

D. Average Impact Ratio vs. Failure Model Parameters

V. CONCLUSION
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information) to find efficient and region failure-tolerantpoints in it, is given by
routing algorithm to alleviate the impacts of region fadur A — gt (1 — o
can be an interesting work. o =Cra"(1-¢")

« Recovery issue: We only considered the PRF impact A Ié] .
before network recovery (like topology reconfigure and = Cq” Z(—l)(i> (=p)
flow rerouting), so it only indicates the worst case net- =1
work performance degradation. How to extend this work <Crq’-p-
to estimate the network performance degradation (like =Crg"(1—q)- B (25)

the flow capacity degradation) after network recovery Based on the (25), we first establish the following results

deserves_ further study. ) regarding the second term in the left side of (21) under the
« Vulnerability under other metrics: To have a more deep%ecial case that > 1 and~ = 0

understanding of network vulnerability under PRF, an-

other future work is to extend the framework established Z vg (8, O)(l — qf’)
in this paper to further evaluate the network performance B>1
degradation under other metrics, like the pairwise con- < ka(ﬁ,o) p-B (26)
nectivity [31], critical vertex/edge [28]-[30], etc. 1
= B-w(B,0)p
VI. APPENDIX B>1
< Ny -91-p (27)

Based on the (12) and (13) we know that to prove the (14),h , »
we just need to show that for anf; the following condition Where inequalities (26) and (27) are due to the (25) and (23),

holds respectively.
We now show that for the general cage> 1, v > 1, we
have
Z ur(N)g* + Z vk (B, ’Y)(l - qﬁ)qv Z vk(ﬁ,’y)(l — qﬁ)q"Y
A>1 B>1,7>0 B>1,y2>1
_ _ 92 _ _
< Ni(1q + a2¢” + 01p + V2pg) (21) < Y w8 (28)
From the discussion in Section 111-C we know that only the pzlo=t
cells of cases 2 and 3 in (11) will introduce the ECD estinratio < Z B-ve(B,7)q-p
error. We first consider the first term regarding the case 2 cel pzlyzl
in the left side of (21), i.e., the teri, -, ur(\)¢*. Since S Ng-v2-q-p (29)

the d;,q, is the maximum distance between any two neighbgfhere inequalities (28) and (29) are due to the (25) and (24),
nodes of any flow, it is trivial to see that,(1) < Ny - 4. respectively.

Based on the definitions af; andy, and also notice that®  Combining the (27) and (29), the following inequality for
monotonically decreases asincreases, we have the cells of case 3 follows,
3wk (Ne < Nio(tinq + t2”) (22) > wB(1 =) < Ne(vip+v2pg)  (30)
A>1 321,720

o . . Finally, the (21) comes after the (22) and (30).
Similarly, for the cells belonging to the case 3 in (11), we
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