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ABSTRACT

Passive User Authentication in Industrial Internet of Things

by

Guozhu Zhao

Industrial Internet of Things (IIoT) serves as an important network architecture

for information collection, exchange and analysis in the industrial platform. An IIoT

system usually consists of a vast number of users with highly diverse authority rights

and constantly generates/stores huge amounts of confidential information, so how

to design flexible and cost-effective authentication approaches to ensure the secu-

rity of IIoT systems becomes an increasingly urgent demand. Specially, the passive

user authentication is of great importance for IIoT systems to implement continu-

ous and non-intrusive user identity verification. The IIoT can be roughly divided

into three layers according to the functions of IIoT, i.e., the Manufacturing Execu-

tion (ME) layer, Monitoring and Control (MC) layer, and Decision and Optimization

(DO) layer. This dissertation develops user authentication schemes corresponding

to these three layers to ensure the secure operation of IIoT systems. First, for user

authentication of the ME layer, this dissertation explores the common behavioral bio-

metrics from user sequential operation actions in IIoT systems to propose a passive

authentication framework, which provides continuous/non-intrusive user authentica-

v



tion and poses good anti-interference capability in the interference-intensive environ-

ment of the ME layer. Second, for user authentication of the MC layer, we explore

the user consecutive screen-touch actions during routine work processes and propose

a passive authentication method based on both the time-varying characteristics and

spatial image characteristics of the user touch trajectory sequences, which provides

implicit/non-intrusive user identity verification and can meet the real-time authenti-

cation requirement of the MC layer. Finally, for user authentication of the DO layer,

we develop a novel two-dimensional passive authentication framework by jointly uti-

lizing both the time-varying characteristics of the user sequential operation actions

and spatial variation characteristics of Channel State Information (CSI) caused by

these actions, which applies to the authentication of the DO layer with high security

requirement. It is expected that the new authentication methods proposed in this

dissertation can significantly facilitate the applications of IIoT systems.
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CHAPTER I

Introduction

In this chapter, we first introduce IIoT system and its function architecture. Then

we demonstrate the essence of IIoT and the difference between IIoT and IoT. Sub-

sequently, we clarify new security challenges in IIoT and authentication challenges

in IIoT scenarios. We further present the objective and main work of this thesis.

Finally, we give the outline and main notations of this thesis.

1.1 Overview of IIoT

1.1.1 IIoT System

General Electric (GE) coined the name “Industrial Internet” as their term for the

Industrial Internet of Things (IIoT), and others such as Cisco termed it the Internet

of Everything and others called it Internet 4.0 or other variants [1]. Generally, IIoT

refers to the extension and use of the Internet of Things (IoT) in industrial sectors and

applications. With a strong focus on Machine-to-Machine (M2M) communication,

big data, cloud computing, and machine learning, IIoT enables industries and enter-

prises to have better efficiency and reliability in their operations. IIoT encompasses

industrial applications, including robotics, medical devices, and software-defined pro-

duction processes. IIoT serves as an important network architecture for information
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collection, exchange, and analysis in the industrial platform. With the rapid merg-

ing of Information Technology (IT) and Operational Technology (OT), IIoT becomes

highly promising to significantly boost the automation, efficiency, and productivity

in the global manufacturing industry. By now, IIoT has been widely employed in

some critical industrial applications like the automotive industry, oil/gas industry,

healthcare, energy production, and agriculture industry [1–3].

IIoT provides a way to get better visibility and insight into the company’s oper-

ations and assets through the integration of machine sensors, middleware, software,

backend cloud computing, and storage systems. Therefore, it provides a method of

transforming operational business processes by using the results gained from interro-

gating large data sets through advanced analytics as feedback. The business gains

are achieved through the improvement of operational efficiency and accelerated pro-

ductivity, which results in reduced unplanned downtime and optimized efficiency, and

thereby profits. Although the technologies and techniques used in today’s industrial

environments may look similar to IIoT, the scale of operation is vastly different. For

example, huge data streams can be analyzed online using cloud-hosted advanced ana-

lytics at wire speed. Additionally, vast quantities of data can be stored in distributed

cloud storage systems for future analytics performed in batch formats. These massive

batch job analytics can glean information and statistics from data that would never

have previously been possible because of the relatively tiny sampling pools. Process

engineers can then use the results of the analytics to optimize operations and pro-

vide the information that executives can transform to knowledge, in order to boost

productivity and efficiency, and to reduce operational costs [1, 4].

1.1.2 IIoT Function Layer Architecture

The core functional principle of IIoT is based on the comprehensive interconnec-

tion and deep collaboration between the physical system and the digital space driven

2



by data, as well as intelligent analysis and decision-making optimization in the pro-

cess. As shown in Fig. 1.1, the function layer architecture of IIoT mainly includes

three basic layers of Manufacturing Execution (ME) layer, Monitoring and Control

(MC) layer, and Decision and Optimization (DO) layer, as well as a closed loop of

industrial digital application optimization consisting of bottom-up information flow

and top-down decision-making flow [5–10].

The ME layer usually covers industrial production, manufacturing, and assem-

bly of IIoT systems. Common application cases of the ME layer are the production

and manufacture of high-precision electronic components, automatic assembly and

production workshops of automobiles, and production lines of smart home appli-

ances. In the ME layer, due to the needs of product production and manufacturing, a

large amount of alternating current, motor equipment with changing strong magnetic

fields, and cross coverage of various wireless signals generate more electromagnetic

interference. Therefore, the ME layer is usually accompanied by a large amount of

electromagnetic interference. The MC layer often involves critical human-computer

interaction, access control, command transmission, and data exchange in IIoT sys-

tem, where there are a large number of important real-time instruction uploading and

downloading, user access control, and manufacturing process monitoring. Examples

of typical applications for the MC layer include industrial APP access and inter-

action, robot systems, manufacturing modeling, and identification analysis system.

The DO layer mainly covers decision making, optimization, description, diagnosis,

business operations, and management. In highly intelligent IIoT systems, artificial

intelligence platforms, and intelligent decision-making systems are usually deployed

on the DO layer. In the DO layer, a large amount of confidential information and

sensitive data (such as finance, core technology, core algorithms, operation and sales

strategies, crucial customer information, and key management technical services) are

generated, stored, and exchanged.
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Manufacturing Execution (ME) Layer

Sensing,  instruction execution, networking, information collection, and industrial control

Monitoring and Control (MC) Layer 

Real-time access control, command transmission, data exchange, data interoperability, 

modeling, and identification analysis

Decision and Optimization (DO) Layer 

Decision making, optimization, description, diagnosis, business operations, and operation 

management

IIo
T

 sy
stem

Figure 1.1: IIoT function layer architecture.

1.2 IIoT vs. IoT

To illustrate the difference between IoT and IIoT, we first introduce the definition

of IoT. According to [11], IoT comprises large numbers of smart devices at the network

edge that may have to collaborate and interact with each other in real time. In [12],

the authors define IoT as an environment in which objects (devices) are given unique

identifiers and the ability to transfer data over a network without having human-to-

human or human-to-computer interaction. From another view in [13], IoT could be

specified as a worldwide network of interconnected entities. As stated in [14], IoT is

an ecosystem that interconnects physical objects with telecommunication networks,

joining the real world with the cyberspace and enabling the development of new

kinds of services and applications. Combining with the definition of IIoT mentioned

in Section 1.1, we can see that IIoT is generally different from IoT in definition and

function. Then, as shown in Table 1.1 we clarify the characteristics of IoT and IIoT

in terms of components, applications, and security challenges. From the perspective

4



of components, IIoT is more complex than IoT, and consists of machine sensors,

middleware, APP, backend cloud technology, SDN, IoT, and storage technologies.

However, IoT generally serves as the foundation and supporting technology to provide

a platform for other applications. In terms of application scenarios, IIoT puts more

emphasis on industrial manufacturing, industrial chain, manufacturing ecosystem,

and some critical industrial applications, while IoT focuses on the unique identity

of the device, network interconnection, and human-to-human or human-to-computer

interaction. Finally, we can see from Table 1.1 that there are new security challenges

faced by IIoT compared with IoT.
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Specifically, the current IIoT systems are facing various security challenges, both

from their inherited IoT architecture and their own properties [15–18]. First, in

industrial production sites, IIoT uses Industrial Control System (ICS) to collect,

process, and analyze local data and resources. However, the current IIoT systems

lack effective authentication and security mechanisms (e.g., authentication with high

anti-interference capability) for the ICS. Second, in Cyber-Physical Systems (CPS),

IIoT connects physical systems (hardware), software systems, and various types of

systems through gateways. However, the current IIoT systems lack efficient gateways

and real-time cross-layer security protocols. Third, IIoT systems process and store

data in the cloud platform. However, the current IIoT systems lack effective protocols,

frameworks, and algorithms to protect data security in heterogeneous cloud platform

scenarios. Finally, IIoT often involves a large number of users, terminal devices, and

industrial applications. The current IIoT lacks security mechanisms (e.g., to ensure

the identity of a user interacting with IIoT is not impersonated) for satisfying different

performance requirements across various IIoT scenarios to ensure the safe operation

of the IIoT systems [15, 18].

1.3 User Authentication in IIoT

1.3.1 Authentication in IIoT

With the rapid merging of IoT, big data, and cloud computing technologies, IIoT

becomes highly promising to boost the platform-based design, intelligent manufactur-

ing, and networked collaboration in the global manufacturing industry [19–21]. Notice

that the IIoT systems usually focus on critical industrial fields like the automotive

industry, smart transport, medical care, and agriculture, so the security guarantee is

of great importance for the secure operations of such systems [22–24]. Among these

aforementioned security challenges, user authentication serves as a critical one since
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such systems usually involve a large number of users (both for line operators and

product designers) with highly diverse authority rights [25].

An IIoT system is generally a cloud-based system. The user authentication in

the IIoT is usually encapsulated as a cloud service to verify the identities of cloud

users who are attempting to access the system and thus to prevent unauthorized

users from accessing to the sensitive information of the system [26, 27]. Depending

on whether a user actively participates in the authentication process or not, the user

authentication in IIoT systems can be roughly classified as active authentication and

passive one. Active authentication usually requires some specified actions from a

user to be authenticated (e.g., entering passwords and providing fingerprints), and it

is commonly applied to the one-time authentication scenarios where the continuous

monitoring of user legitimacy is not necessary once the user is successfully authen-

ticated as a legitimate one [28–31]. In contrast, the passive authentication mainly

explores the intrinsic properties related to the user inherent activities and behaviors

to carry out user authentication, so it does not need additional actions from a user for

authentication purpose and thus is highly appealing for the continuous user identity

verification.

1.3.2 Why Passive Authentication in IIoT

Notice that IIoT systems usually involve a large number of users, where each user

needs to manipulate multiple devices and perform many critical operations on these

devices during his routine work process. In particular, to ensure the secure operation

of an IIoT system, a user needs to frequently conduct user identity authentication

whenever the user accesses his devices and whenever the user performs a critical oper-

ation. The conventional user authentication in IIoT systems usually adopts the active

authentication methods like the pin-based or pattern-based authentication [32, 33].

Such active user authentication methods are suitable for entry-point or one-time au-
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thentication since they require additional operation actions for authentication purpose

(e.g., inputting password or ID information), but they are unrealistic for the frequent

and non-intrusive authentication in IIoT systems where users are busy with their

routine work operations and can hardly find time to frequently conduct additional

operations for authentication. On the other hand, the passive authentication methods

determine the identity of a user by exploiting his intrinsic behavioral traits during

the routine work process, so they do not need additional operations from the user for

authentication purpose and thus are highly appealing for frequent user authentication

in the practical IIoT environments [34, 35]. Therefore, passive user authentication is

of great importance for security guarantee in IIoT systems.

1.3.3 Challenges for Passive Authentication in IIoT

High anti-interference capability

Real-time requirement

High security requirement

ME Layer

MC Layer

DO Layer
IIo

T
 sy

stem

Authentication challenges

Figure 1.2: Challenges for passive authentication in IIoT.
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In the actual operation process of IIoT, the ME layer, the MC layer, and the DO

layer complement each other to form a bottom-up information flow and a top-down

decision flow. As a result, different layers play their own unique roles while also fac-

ing different authentication challenges. As shown in Fig. 1.2, for the ME layer, a

large amount of alternating current, motor equipment with changing strong magnetic

fields, and cross coverage of various wireless signals generate more electromagnetic

interference. So the user authentication in such layer requires the user authentication

protocol to have better anti-interference ability. However, existing research efforts

[36–41] lack effective interference removal or noise reduction methods, and the use

of the motion characteristics of single sensor cannot effectively characterize users’

identities in the presence of interference. For the MC layer, critical human-computer

interaction, access control, command transmission, and data exchange are involved

in IIoT systems. Therefore, the systems urgently need authentication protocols or

frameworks with better real-time characteristics. Existing user identity authentica-

tion methods using human-computer interaction behaviors or behavioral biometric

features (such as keystroke patterns-based authentication [42–44], gait-based authen-

tication [45, 46], speaking-based authentication [47, 48], and touch-based authentica-

tion [35, 49]) have a large delay and consume more computing and storage resources

in practical industrial application. For the DO layer, the core industrial applications

or services related to the Industrial Internet generate, store, and exchange extensive

sensitive data. Hence, an authentication protocol with high security performance

is required to protect sensitive data in the DO layer. But, available authentication

approaches [26, 32–35] are usually difficult to accurately depict the user identities

and thus to achieve an acceptable user authentication performance based on only

one-dimensional characteristics.
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1.4 Objectives and Main Contributions

High anti-interference capability

Real-time requirement

High security requirement 

ME Layer

MC Layer

DO Layer

IIo
T

 sy
stem

Authentication challenges

Chapter III: Authentication Utilizing Behavioral 

Biometrics for the ME Layer

Chapter IV: Authentication Utilizing Consecutive  

Screen-touch Trajectory Features for the MC Layer

Chapter V: Authentication Utilizing Two-

Dimensional Features for the DO Layer

Objectives

Figure 1.3: Objectives and main contributions of this thesis.

Corresponding to authentication challenges in the three layers of IIoT systems, we

develop three schemes to satisfy these different authentication performance require-

ments across various IIoT scenarios, as shown in Fig. 1.3. For IIoT authentication

requirements of high anti-interference capability in the ME layer, we first explore

the common behavioral biometrics from sequential operation actions in IIoT systems

to propose a passive authentication framework for continuous and non-intrusive user

authentication against the impersonation attack. In the authentication scheme, we

leverage the Kalman filtering andWavelet techniques for noise elimination and the sin-

gular value decomposition method for the dimensionality reduction of feature space.

For IIoT authentication requirements of high real-time performance in the MC layer,

we propose a new user authentication framework based on the spatial-temporal fea-

tures of screen-touch trajectories for continuous user authentication in practical IIoT

scenarios by designing two classifiers corresponding to the spatial-temporal screen-
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touch trajectory features and assigning each classifier an appropriate weight. In the

authentication scheme, every time a user touches the screen, the IIoT authentica-

tion systems can verify the user’s identity by analyzing the time-varying features of

touch trajectory sequences and cumulative Screen-touch Trajectory Images (STTIs)

characteristics, thus ensuring the real-time user authentication. For IIoT authen-

tication requirements of high security performance in the DO layer, we develop a

novel two-dimensional passive authentication framework by jointly utilizing both the

time-varying characteristics of the user sequential operation actions and spatial vari-

ation characteristics of Channel State Information (CSI) caused by these actions. In

the authentication scheme, by jointly exploiting the two-dimensional features of user

sequential operation actions, we can not only provide a full spatial-temporal charac-

terization of user identities but also significantly improve the security of the proposed

passive user authentication.

Three commonly-used authentication performance metrics are of particular inter-

est for authentication performance evaluation. They are false acceptance rate (FAR),

false rejection rate (FRR), and equal-error rate (EER) [26, 50, 51]. The FAR denotes

the ratio between the number of false acceptances and that of test samples from at-

tackers, FRR denotes the ratio between the number of false rejections and that of

test samples from legitimate users, and EER represents the sensitivity of the proposed

authentication approach at the point where FAR = FRR [51]. We also adopt the au-

thentication accuracy to evaluate the performance for resisting the impersonation

attacks of the proposed framework, here the authentication accuracy is defined as the

probability that the system successfully distinguishes between the legitimate users

and impersonation attacks. The main contributions of this thesis are summarized in

the following subsections.
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1.4.1 Authentication Utilizing Behavioral Biometrics for the Manufac-

turing Execution (ME) Layer

It is demonstrated that the passive authentication mainly exploits the intrinsic

behavioral traits of a user during the routine work process to determine its identity.

By now, some research efforts have been devoted to the study of passive user au-

thentication based on single user behavioral characteristic [36–41]. It is worth noting

that the existing user authentication based on single action characteristic cannot be

directly extended to the IIoT systems. On one hand, in industrial production process

users are always required to operate mobile devices in a uniform and standardized

manner, so relying on single behavioral characteristic can not ensure the uniqueness

of user identity. On the other hand, in the IIoT environment there are often some

specific user dress rules such as having to wear protective gloves or clothes, which

results in a low discriminability of behavioral features and thus an inefficient authen-

tication performance. In addition, the available single characteristic-based passive

authentication solutions are usually sensitive to specific noise and interference [32],

which makes them unsuitable for the complex IIoT systems suffering from intensive

noise and interference (e.g., gravity components and non-stationary noise).

Based on this background, this work explores the common behavioral biometrics

from sequential operation actions in IIoT systems and develops a multiple characteristics-

based passive authentication framework for continuous and non-intrusive user identity

verification. The main contributions of this work are summarized as follows:

• We first provide extensive experiment results to demonstrate that in IIoT sys-

tems the common behavioral biometrics from sequential user operation actions

(i.e., walking, scanning, screen-touch, and photographing-uploading) exhibit

good discriminability and stability in discriminating user identities.

• We then develop a theoretical framework for characterizing the intrinsic features
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of sequential operation actions. In particular, we employ the Kalman filtering

and Wavelet techniques to reduce the noise in sensor signals of user operation

actions, and apply the singular value decomposition method to achieve the

dimensionality reduction for the feature space of sequential operation actions.

• By modeling the transitions of operation actions as a Markov chain and applying

the one-class classification technique for user classification, we develop a passive

user authentication framework for continuous and non-intrusive user identity

verification against the impersonation attack.

• Finally, experiment results are provided to illustrate the authentication perfor-

mance of the proposed authentication framework in terms of the false accep-

tance, false rejection and equal-error rates. The related authentication efficiency

issues, like the usability to the operation-action sequence length, the scalability

to the number of features and user space, and the sensitivity to the operation

action features, are also investigated.

1.4.2 Authentication Utilizing Consecutive Touch Trajectory Features for

the Monitoring and Control (MC) Layer

Behavioral biometric user authentication solutions have been widely used for smart

mobile terminals (MTs), such as keystroke patterns-based authentication [42–44],

gait-based authentication [45, 46], speaking-based authentication [47, 48], and touch-

based authentication [35, 49]. Among these behavioral biometric user authentication

solutions, touch-based authentication is of particular interest for implementing the

continuous and non-intrusive user identity verification. To the best of our knowledge,

the existing literature only focuses on either screen-touch time domain characteristics

of single trajectory [52], or spatial motion behavior characteristics of touch actions [26,

34]. To further improve the performance of touch-based authentication solutions for

14



the special IIoT environment, we develop the spatial-temporal screen-touch trajectory

characteristics of touch trajectories in both time variation and space combinatorial

distribution. The main contributions of this work are summarized as follows:

• By exploiting the time-varying nature of user screen-touch sequences from the

routine work process of a user and applying the Hidden Markov Model (HMM)

to characterize behavioral biometric characteristics of the user, we develop a

new method to characterize the screen-touch-based behavioral biometric char-

acteristics of users in IIoT scenarios.

• We then develop a theoretical framework based on Least Squares Polynomial Fit

for characterizing spatial features of the STTIs from the user routine sequential

touch trajectories. In particular, we successively reconstruct each touch trajec-

tory of a screen-touch operation action sequence in an image to maintain the

shape, relative position and length of the touch trajectory, and adopt average

pressure, average curvature and average deviation degree of the trajectory to

depict its RGB color in the image. We further apply the Speeded Up Robust

Features (SURF) algorithm to extract user STTI features.

• We further design two classifiers based on HMM and eXtreme Gradient Boosting

(XGBoost), respectively, corresponding to the above spatial-temporal screen-

touch trajectory characteristics. By weighing outputs of these two classifiers,

we thus develop a novel user authentication framework for continuous user au-

thentication in various IIoT scenarios.

• We conduct extensive experiments to illustrate the authentication performance

of the continuous authentication framework in terms of false acceptance rate,

false rejection rate and equal-error rate. We also investigate the related authen-

tication efficiency issues in terms of the usability to weights of two classifiers,
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the operation-action sequence length, and the scalability to the number of user

space.

1.4.3 Authentication Utilizing Two-Dimensional Features for the Deci-

sion and Optimization (DO) Layer

It is notable that when applying existing available passive authentication ap-

proaches in modern IIoT systems, it is usually difficult to accurately depict the user

identities and thus to achieve an acceptable user authentication performance based on

only one-dimensional characteristics. First, users in IIoT systems usually just follow

the requirements of industrial production businesses to conduct some basic operations

over their MTs in a standardized manner, making it difficult to accurately charac-

terize the user identities with only the time-varying behavioral biometric features

extracted from their operation actions. Second, the IIoT systems share a relatively

uniform electromagnetic and space environment, so users there show a strong loca-

tion correlation and thus a low discriminability in terms of the CSI spatial variation

characteristics [53, 54]. However, our results in this work indicate that by jointly

exploiting the two-dimensional features of the time-varying characteristics of user se-

quential operation actions and spatial variation characteristics of CSI caused by these

actions, we can not only provide a full spatial-temporal characterization of user iden-

tities but also significantly improve the performance of passive user authentication.

The main contributions of this work are summarized as follows:

• By constructing time-varying operation action sequences from the routine work

process of a user and adopting the HMM to model these sequences, we develop

a new method to characterize the behavioral biometric characteristics of users

in IIoT scenarios.

• We then propose a new approach to depict the spatial-temporal variations of

16



CSI related to a user, in which the WiFi CSI data related to the user is first sliced

to reduce the noise and interference from the random actions of the user, then

the multi-domain features from the CSI data are extracted and the XGBoost

model is applied to characterize these features.

• We further design two classifiers corresponding to the above two characteristics.

By combining these two classifiers and assigning each classifier an appropriate

weight, we thus develop a novel two-dimensional user authentication framework

for passive, continuous and non-intrusive user authentication in IIoT scenarios.

• We conduct extensive experiments to evaluate the performance of the proposed

authentication framework in terms of false acceptance rate, false rejection rate

and equal error rate, and also examine the related authentication efficiency

issues such as the sensitivity to the weights for classifiers, the sensitivity to au-

thentication time and the capability of resisting against impersonation attacks.

1.5 Thesis Outline

The remainder of this thesis is outlined as follows. Chapter II introduces the

related works of this thesis. In Chapter III, we focus on the common behavioral

biometrics from sequential operation actions in IIoT systems and develop a multi-

ple characteristics-based passive authentication framework for continuous and non-

intrusive user identity verification. In Chapter IV we explore touch-based features

of time-varying screen-touch trajectory sequences and cumulative consecutive screen-

touch trajectory images from user touch actions during routine work processes in

IIoT systems for passive authentication and in Chapter V we develop a novel two-

dimensional user authentication framework for passive, continuous and non-intrusive

user authentication by jointly exploiting the two-dimensional features of the time-

varying characteristics of user sequential operation actions and spatial variation char-
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acteristics of CSI caused by these actions. Finally, we conclude this thesis in Chapter

VI.

1.6 Notations

The main notations of this thesis are summarized in Table 1.2.

Table 1.2: Main notations

Symbol Definition

IIoT Industrial Internet of Things

ROE/ME R&D office environments/common manufacturing environments

Glo Manufacturing environments requiring to wear protective gloves

FPC Manufacturing environments requiring to wear full-body protec-

tive clothing

IT Information technology

OT Operational technology

MTs Smart mobile terminals

SVD Singular value decomposition

HMM Hidden Markov Model

WIs Work Instructions

STTIs Cumulative Screen-touch Trajectory Images

XGBoost eXtreme Gradient Boosting

SURF Speeded Up Robust Features

CSI Channel State Information

OAS A sequence of successive operation actions collected from his

routine work process
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ΥAz/ΥPi/ΥRo The orientation sensor values of Azimuth, Pitch, and Roll, re-

spectively

Bwal Matrix for characterizing the user’s walking operation features

Bsca Matrix for characterizing the user’s scanning operation features

Btou Matrix for characterizing the user’s screen-touch operation fea-

tures

Bpu Matrix for characterizing the user’s photographing-uploading

operation features

F The set of a user’s operation-action features

λ The HMM

O Observed operation-action feature sequence in HMM

X An unknown user

U The identity of the unknown user

FAR False acceptance rate

FRR False rejection rate

EER Equal-error rate

§ The test sample set

Sn×m The training sample space

MMD(·) Maximum Mean Discrepancy

χ The screen-touch trajectory sequences dataset

ω1, ω2 Two weights of classifiers

ϕ A preset threshold for authentication decision in the IIoT sys-

tems

̟1 User claim is true (a legitimate user)

̟2 User claim is false (an impostor)

OL An OSA of length L
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RBio A one-versus-all multi-class classifier based on behavioral bio-

metric features of users

RCSI A one-versus-all multi-class classifier based on CSI features of

users
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CHAPTER II

Related Works

This chapter introduces the existing works related to our study of the thesis,

including active user authentication and passive user authentication solutions. User

authentication is the process of verifying user identity who is attempting to access

the IIoT services, which can be used to prevent the unauthorized users from gaining

access to sensitive information and thus to ensure the security of IIoT systems [55, 56].

Depending on whether a user actively participates in the authentication process or

not, the user authentication in IIoT systems can be roughly classified as the active

authentication or passive authentication [36, 57–60]. In the former case, some specific

actions (like entering passwords or presenting credentials) from the user are required

for authentication, so such a method is usually adopted for one-time authentication at

entry point [52]. In contrast, the passive authentication mainly exploits the intrinsic

behavioral traits of a user during the routine work process to determine its identity,

so such a method can be used for continuous and non-intrusive authentication [57].

2.1 Active User Authentication

The main idea of active authentication is that the authentication system requires

the users to actively participate in the authentication process. Active user authentica-

tion methods are suitable for entry-point or one-time authentication since they require
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additional operation actions for authentication purpose (e.g., inputting password or

ID information). Security and privacy protection are important for the widespread

use of IoT in transportation and logistics, since many vehicle drivers are worried

about information leakage and privacy invasion. Reasonable efforts in technology,

law, and regulation are needed to prevent unauthorized access to or disclosure of

the privacy data [22]. Behavioral biometric user authentication solutions have been

widely used for MTs, such as keystroke patterns-based authentication [42–44], gait-

based authentication [45, 46], speaking-based authentication [47, 48], and touch-based

authentication [35, 49]. The authors in [29] propose a novel system for protecting fin-

gerprint privacy by combining two different fingerprints into a new identity. A two-

stage fingerprint matching process is proposed for matching the two query fingerprints

against a combined minutiae template. By storing the combined minutiae template,

the complete minutiae feature of a single fingerprint will not be compromised when

the database is stolen. Furthermore, because of the similarity in topology, it is diffi-

cult for the attacker to distinguish a combined minutiae template from the original

minutiae templates. The authors in [28] investigate the possibility of generating a

‘MasterPrint’, a synthetic or real partial fingerprint that serendipitously matches one

or more of the stored templates for a significant number of users. Their preliminary

results on an optical fingerprint data set and a capacitive fingerprint data set indicate

that it is indeed possible to locate or generate partial fingerprints that can be used

to impersonate a large number of users, which thus expose a potential vulnerability

of partial fingerprint-based authentication systems, especially when multiple impres-

sions are enrolled per finger. In [30], the authors propose an approach to counter

replay attacks for face recognition on smart consumer devices using a noninvasive

challenge and response technique. The image on the screen creates the challenge,

and the dynamic reflection from the person’s face as they look at the screen forms

the response. The sequence of screen images and their associated reflections digitally
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watermarks the video. By extracting the features from the reflection region, it is

possible to determine if the reflection matches the sequence of images that were dis-

played on the screen. In [31], the authors adopt iris biometrics for unconstrained user

authentication using hand-held devices such as smartphones. The analyses presented

in their work indicate that a similar camera module with improved optics and sensors

could combine iris biometrics with conventional front camera functions such as video

calls and the capture of selfie images. The authors in [42] study the performance of

Long Short-Term Memory (LSTM) networks for keystroke biometric authentication

at a large scale in free-text scenarios. For this they explore the performance of LSTM

networks trained with a moderate number of keystrokes per-identity and evaluated

under different scenarios. The proposed approach in their work achieves state-of-

the-art keystroke biometric authentication performance with an Equal Error Rate

of 2.2% and 9.2% for physical and touchscreen keyboards, respectively, significantly

outperforming previous approaches.

2.2 Passive User Authentication

Notice that IIoT systems usually involve a large number of users, where each user

needs to manipulate multiple devices and perform many critical operations on these

devices during his routine work process. In particular, to ensure the secure operation

of an IIoT system, a user needs to frequently conduct user identity authentication

whenever the user accesses his devices and whenever the user performs a critical oper-

ation. The conventional user authentication in IIoT systems usually adopts the active

authentication methods like the pin-based or pattern-based authentication [32, 33].

Such active user authentication methods are suitable for entry-point or one-time au-

thentication since they require additional operation actions for authentication purpose

(e.g., inputting password or ID information), but they are unrealistic for the frequent

and non-intrusive authentication in IIoT systems where users are busy with their
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routine work operations and can hardly find time to frequently conduct additional

operations for authentication. On the other hand, the passive authentication methods

determine the identity of a user by exploiting his intrinsic behavioral traits during

the routine work process, so they do not need additional operations from the user for

authentication purpose and thus are highly appealing for frequent user authentication

in the practical IIoT environments [34, 35].

By now, some research efforts have been devoted to the study of passive user

authentication [36–41]. In [61–64] Single sign-on (SSO) mechanism enables users to

be securely authenticated with multiple applications and websites by using just one

set of credentials, which provides users with a new way of password management and

user authentication. In [26], the authors utilize kinematic information sequences of

multi-motion sensor behavior for passive user authentication when the user interacts

with his smartphone, and also propose a decision procedure based on HMM to char-

acterize the behavioral biometric feature space such that the continuous user identity

verification can be implemented across various operational scenarios. The authors

in [52] demonstrate the discriminability and robustness of features related to screen-

touch behaviors, and then apply these features to develop a passive authentication

solution for smartphone users. The authors in [53] show that it is possible to distin-

guish profiles of users by exploring CSI information even when they possess similar

CSI fingerprints. They also design a practical user authentication approach based on

the fine-grained CSI features to accurately determine the user identities in both lab

and apartment environments. The literature [65] exploits the CSI of WiFi signals to

extract the gesture features (like push, swing, and wave) and some identity-related

imperceptible features, and then applies the HMM and Fresnel Model to develop a

robust and efficient user authentication approach to determine user identities in IoT

environments. In [32], the authors develop a non-intrusive and implicit authenti-

cation approach based on the accurate and fine-grained feature of mouse-interaction
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behavior segments. The literature [45] focuses on exploiting both the three-dimension

features (i.e., color, depth, and inertial) of dynamic gait and the multiclass support

vector machine classifier to determine the user identity.

It is notable, however, that there are some problems for the above aforementioned

authentication solutions.

1) The above passive authentication solutions cannot be directly extended to the

IIoT systems. Although the above passive authentication solutions are effective for

user identity verification in their concerned application scenarios, they cannot be di-

rectly extended to the IIoT systems. On one hand, in the industrial production pro-

cess users are always required to operate mobile devices in a uniform and standardized

manner, so relying on single behavioral characteristic can not ensure the uniqueness

of user identity. On the other hand, in the IIoT environment there are often some

specific user dress rules such as having to wear protective gloves or clothes, which

results in a low discriminability of behavioral features and thus an inefficient authen-

tication performance. In addition, the available single characteristic-based passive

authentication solutions are usually sensitive to specific noise and interference [32],

which makes them unsuitable for the complex IIoT systems suffering from intensive

noise and interference (e.g., gravity components and non-stationary noise).

2) The existing literature only focuses on either screen-touch time domain charac-

teristics of single trajectory [52], or spatial motion behavior characteristics of touch

actions [26, 34]. It is worth noticing that for a given IIoT system, a user generally is

engaged in specific work business according to work instructions (WIs), and interacts

with the cloud platform by performing some common screen-touch operation actions

(e.g., sliding up, sliding down, sliding left, and sliding right) on the touchscreens of

(Mobile Terminals) MTs during routine work processes. To improve the performance

of user authentication for the special IIoT environment, the characteristics of touch

trajectories in both time variation and space combinatorial distribution should be
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further explored. In practical IIoT scenarios it is urgent to explore touch-based fea-

tures of time-varying screen-touch trajectory sequences and cumulative consecutive

screen-touch trajectory images from user touch actions during routine work processes

in IIoT systems and to develop touch-based passive authentication frameworks for

continuous user identity verification.

3) It is notable, however, that when applying the above available passive au-

thentication approaches in modern IIoT systems, it is usually difficult to accurately

depict the user identities and thus to achieve an acceptable user authentication per-

formance based on only one-dimensional characteristics. First, users in IIoT systems

usually just follow the requirements of industrial production businesses to conduct

some basic operations over their MTs in a standardized manner, making it difficult

to accurately characterize the user identities with only the time-varying behavioral

biometric features extracted from their operation actions. Second, the IIoT systems

share a relatively uniform electromagnetic and space environment, so users there

show a strong location correlation and thus a low discriminability in terms of the CSI

spatial variation characteristics [53, 54]. However, our results in this work indicate

that by jointly exploiting the two-dimensional features of the time-varying character-

istics of user sequential operation actions and spatial variation characteristics of CSI

caused by these actions, we can not only provide a full spatial-temporal characteriza-

tion of user identities but also significantly improve the performance of passive user

authentication.
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CHAPTER III

Authentication Utilizing Behavioral Biometrics for

the Manufacturing Execution (ME) Layer

3.1 Background and Related Work

The basic functions of the ME layer are sensing, instruction execution, network-

ing, information collection, and industrial control. In the ME layer, IIoT receives

specific manufacturing instructions, plans, and important parameters from the MC

layer, and realizes manufacturing operations and execution through robots, industrial

networks, robotic arms, controllers, automation systems, and instruction execution

software. Due to the needs of product production and manufacturing, a large amount

of alternating current, motor equipment with changing strong magnetic fields, and

cross coverage of various wireless signals generate more electromagnetic interference.

Therefore, the ME layer is usually accompanied by a large amount of electromagnetic

interference. In order to ensure the robustness and reliability of the authentication,

the authentication protocol at this layer needs to have good anti-interference perfor-

mance.

By now, some research efforts have been devoted to the study of passive user au-

thentication based on single user behavioral characteristic [33, 36, 36–41, 52, 66–68].

The authors in [26] show that it is possible to verify the identity of a smartphone user
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by utilizing kinematic information sequences of multi-motion sensor behavior. They

also investigate the reliability and applicability of using motion-sensor behavior for

continuous smartphone user authentication across various operational scenarios. In

[32], the authors develop a non-intrusive and implicit authentication approach based

on the accurate and fine-grained feature of mouse-interaction behavior segments. The

authors in [52] demonstrate the discriminability and stability of the feature for screen

touch gestures, and then apply this feature to develop a continuous authentication

solution for a user. The literature [45] focuses on exploiting both the three-dimension

features of dynamic gait and the multiclass support vector machine classifier to de-

termine the user identity.

3.2 Motivation

The existing passive authentication solutions are effective for user identity verifi-

cation in their concerned application scenarios, but they cannot be directly extended

to the IIoT systems. On one hand, in the industrial production process users are

always required to operate mobile devices in a uniform and standardized manner,

so relying on single behavioral characteristic can not ensure the uniqueness of user

identity. On the other hand, in the IIoT environment there are often some specific

user dress rules such as having to wear protective gloves or clothes, which results in

a low discriminability of behavioral features and thus an inefficient authentication

performance. In addition, the available single characteristic-based passive authen-

tication solutions are usually sensitive to specific noise and interference [32], which

makes them unsuitable for the complex IIoT systems suffering from intensive noise

and interference (e.g., gravity components and non-stationary noise).

In this chapter, we explore the common behavioral biometrics from sequential op-

eration actions in IIoT systems and develop a multiple characteristics-based passive

authentication framework for continuous and non-intrusive user identity verification.
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In particular, we first provide extensive experiment results to demonstrate that in

IIoT systems the common behavioral biometrics from sequential user operation ac-

tions (i.e., walking, scanning, screen-touch, and photographing-uploading) exhibit

good discriminability and stability in discriminating user identities. We then employ

the Kalman filtering and Wavelet techniques to reduce the noise in sensor signals

of user operation actions, and apply the singular value decomposition method to

achieve the dimensionality reduction for the feature space of sequential operation

actions. We further develop a passive user authentication framework for continuous

and non-intrusive user identity verification against the impersonation attack. Finally,

experiment results are provided to illustrate the authentication performance of the

proposed authentication framework in terms of the false acceptance, false rejection

and equal-error rates. The related authentication efficiency issues, like the usability

to the operation-action sequence length, the scalability to the number of features and

user space, and the sensitivity to the operation action features, are also investigated.

3.3 Threat Model and Overview of Our Approach

3.3.1 Threat Model

Consider an IIoT application scenario, where legitimate users interact with IIoT

systems through mobile devices (industrial-level terminals) in the presence of a poten-

tial attacker. The attacker has access to physical mobile devices and thus can capture

passcodes or proofs of identities to unlock mobile devices. Sensitive information on

manufacturing core technologies might be exploited by the attacker to initiate mali-

cious operations and to steal critical manufacturing data of IIoT systems. Therefore,

the concerned IIoT system should be able to discriminate identities between legiti-

mate users and attackers, based on the operation-action features constructed from

sensor behaviors during the user routine work process. By utilizing the operation-
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action features, one can achieve non-intrusive and continuous authentication when

users implement routine operation actions with mobile devices.

3.3.2 Overview of Our Approach

A user holding a mobile device (information interaction terminal) always performs

some common operation actions (e.g., walking, scanning, and screen-touch) during

routine work processes. The mobile device is typically equipped with various sensors

such as orientation, accelerometer, gyroscope, and touchscreen. It is noticed that in-

dustrial production processes are usually accompanied through the mutual switching

of several user operation actions. The resulting sequences (for mutual switching) of

the operation actions from different users can reflect different levels of posture and

motion change of mobile devices. The switching sequences could represent unique

behavioral characteristics of users. In other words, operation action behaviors can

characterize the identities of users. In this work, we explore the discriminability and

applicability of the operation-action features extracted from built-in sensors in mobile

devices for passive and continuous authentication.

To examine the authentication performance under different IIoT scenarios, here

we consider four scenarios: R&D office environments (ROE), common manufactur-

ing environments (ME), manufacturing environments requiring to wear protective

gloves (Glo), and manufacturing environments requiring to wear full-body protective

clothing (FPC). Specifically, the ROE scenario refers to R&D office environments

where there mainly exists diverse interferences from wireless communications; In the

ME scenario, the interference generally comes from the various strong magnetic and

electric fields induced by industrial devices; In the Glo scenario, users are required to

wear gloves which follow the standard of HG/T 2584-2010; In the FPC scenario, users

need to wear the full-body protective clothing which follows the standard of IEC/TR

61340-5-2-2007. These scenarios could roughly cover a user’s routine operation-action
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environments.

For these IIoT scenarios, we design an authentication framework consisting of

four processes, as illustrated in Fig. 3.1: 1) Raw data collection and preprocess-

ing; 2) Feature construction for operation actions; 3) Dimensionality reduction for

operation-action features; 4) Passive authentication. In the raw data collection and

Figure 3.1: The four processes of the proposed authentication approach for IIoT sce-
narios.

preprocessing process, we collect real-time raw data from built-in sensors of mobile

devices, and leverage a Kalman filter and Wavelet de-noising to reduce the noise along

with the data. The process of feature construction for operation actions aims to an-
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alyze the operation actions (e.g., walking, scanning, and screen-touch) of the user

and then construct the corresponding operation-action feature space. The purpose

of dimensionality reduction for operation-action features is to decrease the amount

of data transmission and processing while enhancing the availability and practicality

of the proposed authentication approach. In the passive authentication process, the

identity of a user will be continuously validated.

3.4 Proposed Authentication Framework

3.4.1 Raw Data Collection and Preprocessing

We develop an application running in the background of mobile devices to ob-

tain raw sensor data by accessing the APIs, which are provided by the SDK of

the mobile device’s operation system. For example, for a mobile device based on

Android operation system, we can collect the accelerometer sensor data by em-

ploying the android.hardware.SensorManager package and listening to the event of

Sensor.Type Accelerometer.

Figure 3.2: The process of raw sensor data collection during the user routine work
process in IIoT scenarios.

For various application scenarios in IIoT systems, we utilize the raw data collected
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from sensors of mobile devices to construct a user’s unique operation-action character-

istics over time, as shown in Fig. 3.2. In particular, we collect raw data by employing

accelerometer, gyroscope, orientation, and touchscreen sensors. The four types of raw

sensor data respectively correspond to walking, photographing-uploading, scanning,

and screen-touch operation actions during the user routine work process in IIoT sce-

narios. The raw sensor data always exists several measurement errors due to diverse

noise and interference (e.g., gravity components and non-stationary noise). There-

fore, to reduce the impact of measurement errors on the authentication performance,

it is necessary to conduct preprocessing for these raw sensor data.

1) Raw data filtering

Note that the interference from gravity components and invariable magnetic fields

is commonly a constant, while sensor values triggered by a user’s operation actions

are usually time-varying variables. Similar to that in [26], we also adopt a Kalman

filtering [69] to estimate the sensor value. Constant noise from IIoT scenarios attached

to each sensor component can be reduced and even eliminated through the following

steps.

Step 1 : If let x̂k−1 be sensor data state estimation at time k − 1 and x̂−k be the a

priori state estimation at time k, then the equation for the time update is expressed

by

x̂−k = Ax̂k−1 +Buk−1, (3.1)

where both A and B are coefficient matrices, related to the states at time k − 1 and

time k, respectively, and uk−1 is an optional control input.

Denoting by Dk−1 the estimation of the error covariance at time k−1, the a priori

estimation (i.e., predicted values) of the error covariance at time k denoted by D−
k is

calculated as

D−
k = ADk−1A

T +Q, (3.2)
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where Q is a process noise covariance in practical IIoT systems.

Step 2 : Based on (3.2), the Kalman gain denoted by Kk is expressed by

Kk =
D−

k H
T

HD−
k H

T +R
, (3.3)

where H is the transformation matrix from state variables to measurements (obser-

vations), and R is the measurement noise covariance matrix. We use zk to denote

the measurement variable by actually measuring the process at time k, and then an

a posteriori state estimation x̂k is written as

x̂k = x̂−k +Kk(zk −Hx̂−k ). (3.4)

Finally, we obtain the a posteriori error covariance estimation as

Dk = (I −KkH)D−
k . (3.5)

In Fig. 3.3 we provide the comparison between the measured results and the

filtered results for accelerometer sensor component values of Accx. We can see from

Fig. 3.3 that constant noise (e.g., gravity components and invariable magnetic fields)

in IIoT scenarios can be effectively reduced through Kalman filtering. Since Kalman

filtering is recursive and can run in real time, it can meet the real-time and high-

efficiency authentication requirements in IIoT systems.

2) Wavelet De-noising

Initial raw data directly collected from sensors always exists multiple peaks and

other interference points due to the non-stationary noise in IIoT scenarios. The non-

stationary noise is in general caused by electromagnetic interference (e.g., changing

current and magnetic field, radio frequency signals) and man-made interference (e.g.,

collision, jitter, and accidental touch on mobile devices). In this work, we leverage
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Figure 3.3: Kalman filtering for acceleration values of x-axis direction (Accx).
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Figure 3.4: De-noising performance comparison of wavelet function Symlets and
Coiflets in different threshold functions. (a) De-noising performance
of wavelet function Symlets under different threshold functions. (b) De-
noising performance of wavelet function Coiflets under different thresh-
old functions.
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wavelet de-noising to not only reduce the non-stationary noise and interference, but

also retain the intrinsic feature of raw sensor data [26, 70].

To examine de-noising efficiency, we provide in Fig. 3.4 the de-noising perfor-

mance comparison between the wavelet function Symlets and Coiflets under various

threshold functions (e.g., Heursure, Minmaxi, and Donoho− Johnstone). We can

see from Fig. 3.4 that the wavelet function Symlets under the threshold function

Heursure is more efficient than Coiflets, since it reduces the non-stationary noise

and interference while retaining the intrinsic feature of raw sensor data. Therefore,

we adopt here the wavelet function Symlets under the Heursure threshold to achieve

the optimal authentication performance of the proposed approach.

3.4.2 Feature Construction for Operation Actions

1) Walking Operation-action Feature

Due to the randomness of user motion, the posture of a mobile device is always

time-varying. As a result, it is very difficult (if not impossible) to discriminate the

values collected from each axis of the built-in accelerometer. To simplify the data

processing and keep the original walking feature, we incorporate sensor component

values collected from three axes into a robust compound variable to depict the user’s

robust gait characteristics.

Let Accx(t), Accy(t), and Accz(t) denote accelerometer component values at time

t on the x, y, and z axes, respectively, and then the value of compound variable of

accelerometer sensor denoted by Acc(t) can be written as

Acc(t) =
√

Acc2x(t) + Acc2y(t) + Acc2z(t). (3.6)

If Acc(t1) ≤ Acc(tx) ≤ Acc(t2) and |t2 − t1| ≤ ∂, Acc(tx) is referred to as a key-

point amplitude of the gait curve, where ∂ is a threshold window specified by the
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IIoT system. Then, Acc(tx) ∈ A and A is the vector of key-point amplitude.

Here, we collect M steps’ key-point amplitudes of each user to characterize the

user’s walking actions. If there are K key-point amplitudes for the m-th step of the j-

th user, then the key-point amplitude vector is denoted as Aj
m = {Aj

m1
, Aj

m2
, ..., Aj

mK
}.

For the j-th user, the set of key-point amplitude data under the M steps is denoted

by Lj
m. Note that the number of key-point amplitudes in a step is random. Hence, the

dimensions of the elements in set Lj
m are not always the same. We use n to denote the

dimension of the minimum dimensional element in Lj
m (i.e., n = min{Length(Lj

m)}).

We can obtain an m× n matrix Bwal for characterizing the user’s walking-operation

features.
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Figure 3.5: Examples of the accelerometer sensor data and Key-point amplitude from
Subject1 and Subject2. (a) Accelerometer sensor components Accx, Accy,
and Accz on the x, y, and z axes, and fused accelerometer sensor values
Acc. (b) Key-point amplitude curves corresponding to Subject1 and Sub-
ject2.

As illustrated in Fig. 3.5, we plot the two-step curves of walking actions for two

users (namely Subject1 and Subject2) and the corresponding performance comparison

of the key-point amplitude discrimination. Fig. 3.5(a) shows the difference between

accelerometer component curves Accx, Accy, Accz and the fused curves Acc of the

two users, respectively. It is seen from Fig. 3.5(b) that the behaviors in terms of key-

point amplitude for the two users are clearly different. This indicates that walking
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operation action from a user has its own unique characteristics, and thus can be used

for the identity of the user.

2) Scanning Operation-action Feature

Scanning two-dimensional code (i.e., QR code) through mobile devices is one of the

most common operation actions for a user in IIoT scenarios to achieve the intelligent

information management, such as automatic information processing, accurate and

fast information collection, and information identification. The orientation sensor’s

spatial-temporal properties trigged by the user during the scanning operation process

contain the robust and practical scanning behavior habits of the user. The user’s

scanning operation-action features can then be used to characterize the user’s identity

for authentication.

In general, an orientation sensor has three components Azimuth, Pitch, and Roll.

We use ΥAz, ΥPi, and ΥRo to denote the orientation sensor values of Azimuth, Pitch,

and Roll, respectively. The values of ΥAz, ΥPi, and ΥRo can be obtained from the

mobile device rotation angle around z-axis, x-axis, and y-axis, respectively. Obvi-
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Figure 3.6: Comparison of the scanning operation-action features of three users (Sub-
ject1, Subject2, and Subject3).

ously, during the process of the user scanning the two-dimensional code, the spatial-

temporal location of the mobile device at time t can be expressed as a vector β. Then

we have βt = (ΥAz,t,ΥPi,t,ΥRo,t). We use βj,i
t to represent the orientation sensor vec-
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Dj→i
t =

√

(Υj,i
Az,t −Υj,i

Az,tpar
)2 + (Υj,i

P i,t −Υj,i
P i,tpar

)2 + (Υj,i
Ro,t −Υj,i

Ro,tpar
)2. (3.7)

tor consisting of the corresponding component values during the j-th user’s scanning

the i-th two-dimensional code at time t. Thus, we have β
j,i
t = (Υj,i

Az,t,Υ
j,i
P i,t,Υ

j,i
Ro,t).

Let β
j,i
tpar denote the orientation sensor vector at time tpar when the mobile de-

vice’s plane is exactly parallel to the two-dimensional code plane. Thus, we have

β
j,i
tpar = (Υj,i

Az,tpar
,Υj,i

P i,tpar
,Υj,i

Ro,tpar
). In order to quantitatively calculate the kinematic

characteristics of the equipment plane relative to the two-dimensional code plane

caused by the user’s scanning action during the scanning two-dimensional code pro-

cess. Let Dj→i
t denote the deviation degree of the mobile device plane relative to the

two-dimensional code plane β
j,i
tpar from the j-th user’s scanning operation actions at

time t, and Dj→i
t is given in (3.7).

The moment when a user successfully scans a two-dimensional code is the ori-

gin of time denoted by t0, and then we employ the orientation sensor value gen-

erated between T periods forward to t0 and backward to t0 to characterize the

user’s scanning operation actions. We use S to denote the number of samples col-

lected from orientation sensor values and have S = 2T
f
, where f is the sampling

frequency. We denote a scanning operation-action sequence of the j-th user by

ξj = {Dj→i
t0−T , D

j→i
t0−T+1, · · · , D

j→i
t0 , Dj→i

t0+1, ..., D
j→i
t0+T}, and the dimension of ξj is S. We

employ adjacentM times’ scanning data to construct the j-th user’s scanning feature

matrix denoted by Bj
sca, and then we have Bj

sca = [ξj1; ξ
j
2; ...; ξ

j
M ].

In Fig. 3.6, we construct three users’ scanning operation-action features ξSubject1,

ξSubject2, and ξSubject3, respectively. It indicates that each user’s scanning operation

action is discriminative and exhibits unique behavioral characteristics, which can be

adopted to execute user authentication in IIoT scenarios.

3) Screen-touch Operation-action Feature

Touching screen is also one of the most common operation actions during the user

39



routine work process. The way (behavioral habits) of interaction with mobile devices

from a user is proven to be applicable to determine the user’s identity [52, 71].

To construct features of the screen-touch operation action, we study screen-touch

behaviors based on 14 common feature parameters listed in Table 3.1. An impor-

tant reason why we choose these features is that these screen-touch features are

proven to be able to resist against the interference generated from the IIoT envi-

ronment. More importantly, these features are easily extracted through information

processing techniques [52]. These feature parameters are self-explanatory and can be

determined through touchscreen sensors. In particular, using the screen-touch data

sequences during a specific time interval ε, we first quantify the 14 feature values

via statistical analysis for the touchscreen sensor data trigged and generated by the

user’s routine touch interactions. Then, the screen-touch feature vector denoted by uε

can be obtained based on the resulting quantization values. Finally, we incorporate

consecutive M screen-touch feature vectors into a matrix denoted by Btou to charac-

terize the user’s robust and practical screen-touch behavioral features, and thus have

Btou = [uε1, uε2, . . . , uεM ].

Table 3.1: List of feature parameters of screen-touch
Dimensions Definitions of feature parameters

1-4 Start x, y, stop x, y
5 Mid-stroke pressure
6 Average direction
7 Average velocity
8 Stroke duration
9 Direct end-to-end distance
10 Mobile device orientation
11 Ratio end-to-end dist and length of trajectory
12 Inter-stroke time
13 Largest deviation from end-to-end line
14 Mid-stroke area covered

4) Photographing-uploading Operation-action Feature

Photographing-uploading operation action through mobile devices is one of the
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most common operation actions for a user to take and upload multimedia data (such

as pictures and videos) in IIoT systems. The photographing-uploading operation ac-

tion possesses the spatial-temporal properties which can be measured by accelerom-

eter and gyroscope sensors [26, 72], and these properties can be leveraged to charac-

terize the user’s unique identity for authentication.

To extract the feature of the photographing-uploading operation, we first collect

sensor data from accelerometer and gyroscope sensors. Specifically, in the duration

of the photographing-uploading action, we collect 6 sensor component data sequences

(2 sensors × 3 axes for each sensor) in the i-th photographing-uploading operation

action denoted by vector Ψi = (Acc(x,i), Acc(y,i), Acc(z,i), Gyr(x,i), Gyr(y,i), Gyr(z,i)). It

is observed that each sensor sequence in Ψi represents a set of sensor events generated

during the photographing-uploading operation action of a user. We then extract the

spatial-temporal characteristics of the photographing-uploading action by analyzing

user photographing-uploading action in time domain and frequency domain. Table

3.2 lists the time domain and frequency domain features of photographing-uploading

operation action from each sensor sequence in Ψi. Specifically, most of time domain

features are self-explanatory. For frequency domain features, we use MF to represent

the mean of frequency f through FFT transform of each sensor sequence in Ψi. Let

FC, RMSF, and RVF denote the barycenter frequency, root mean square frequency,

and variance frequency, respectively. For a given frequency f , its frequency amplitude

s(f) can be obtained through FFT transform of Ψi component, and its FC, RMSF

and RVF can be written as

FC =

∑

fs(f)
∑

s(f)
, (3.8)

RMSF =

√

∑

f 2s(f)
∑

s(f)
, (3.9)
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RV F =

√

(f − FFC)2s(f)
∑

s(f)
. (3.10)

Finally, for each photographing-uploading operation action, the features for each

data sequence in Ψi are concatenated together as a feature vector PΨi
, which can

be used to characterize the i-th photographing-uploading operation action from a

user. In practical applications, we need to get multiple samples to obtain a stable

photographing-uploading operation feature. For m photographing-uploading opera-

tion actions, we denote the corresponding feature matrix asBpu = [PΨ1
,PΨ2

, . . . ,PΨm
].

Table 3.2: List of feature parameters of photographing-uploading operation actions
Category Features Definitions

Time
domain

Maximum
Maximum sensor value of
Ψi component

Minimum
Minimum sensor value of
Ψi component

Mean
Mean sensor value of
Ψi component

Standard
deviation

Standard deviation value
of Ψi component

Peak-to-peak
Difference between maximum
and minimum value of
Ψi component

Kurtosis
Width of peak value of
Ψi component

Frequency
domain

Mean frequency
(MF )

Mean frequency of Ψi

component
Barycenter frequency
(FC)

Barycenter frequency of
Ψi component

Root mean square
frequency(RMSF )

Root mean square frequency
of Ψi component

Variance frequency
(RV F )

Variance frequency of Ψi

component

3.4.3 Dimensionality Reduction for Operation-action Features

To enhance the applicability of the approach developed in this work and to re-

duce the computational complexity, we consider a well-known singular value de-
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composition (SVD) method to achieve dimensionality reduction for features’ ma-

trices. Suppose that the set of a user’s operation-action features F is denoted as

F = [Bwal, Bsca, Btou, Bpu] and F is an m × n matrix, which includes the three fea-

tures we constructed in IIoT scenarios. Then, the singular value decomposition of F

can be written as

F = UΓV T , (3.11)

where U , V , and Γ denote the m ×m left singular matrix, the n × n right singular

matrix, and the m× n singular value matrix, respectively, which can be obtained as

V = F TF, (3.12)

U = FF T , (3.13)

Γ =







Λ 0

0 0






, (3.14)

where Λ = diag(δ1, δ2, · · · , δγ), δ1, δ2, · · · , δγ are singular values, they are arranged

according to δ1 > δ2 · · · > δγ > 0, and γ = rank(Λ). We use the first r∗ singular

values to obtain the approximate value of feature F , and F is given by

F = Um×r∗Λr∗×r∗V
T
r∗×n, r∗ < min{m,n}. (3.15)

In general, all singular values in Λ should be utilized for the feature construction

and optimum authentication performance. Nevertheless, when r∗ grows large, it

may contain many extremely small singular values (even very approach to 0) in Λ.

As a consequence, it might not be a good choice to set r∗ as r∗ = γ. This is
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because including these extremely small singular values in Λ causes a dimensionality

bottleneck and an increase in computational complexity without much real benefit

in terms of the authentication performance. In addition, extensive experiments in

practical IIoT scenarios indicate that when the proportion of the sum of the first r∗

singular values to that of all singular values is greater than a fixed threshold, we can

not only reduce the dimension of F to lessen computational complexity and improve

authentication efficiency, but also remain the features of user identities with tolerable

feature loss. Hence, r∗ is set as

r∗
∑

i=1

δi > φ

γ
∑

i=1

δi, (3.16)

where φ is a constant adjusted accordingly based on the requirements of the authen-

tication performance in practical application scenarios.

3.4.4 Passive Authentication

1) Description of HMM-based authentication

Sequential operation actions exhibit the temporal nature of the problem of inter-

est. Along with the systematical investigation of the operation-action events’ time

sequence distribution, the sequential operation actions appear to be stochastic and

are viewed as a Markov process [73]. Here, we adopt the well-known HMM to de-

scribe the dynamic transferring processes along with time among operation actions

and thereby characterize the user’s identity during the routine work process.

We use λ = (A,B, π) to denote the HMM in our approach, where A, B, π

are the state transition probability matrix, the state observation probability ma-

trix, and the vector of initial state probability, respectively. Herein, the hidden

states refer to the real operation-action features in actual various IIoT production

scenarios such as ROE, ME, Glo, and FPC. Thus, we construct the feature ma-
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trices of hidden states leveraging the pre-enrolled (off-line) data in databases of

IIoT systems. While the feature matrices of observed states are extracted and con-

structed by acquiring sensor data in real time during the user’s routine work pro-

cesses. Let {Hpq} be the sets of hidden states and {Ovw} be the set of observed

states for p, v ∈ {walking, scanning, screen − touch, photographing − uploading} and

q, w ∈ {ROE,ME,Glo,FPC}. It is noticed that the degree of correlation between

FOvw
and FHpq

can be used to show the connection of them and thereby present the

state observation probability. The correlation coefficient between FOvw
and FHpq

is

given by

R(FOvw
, FHpq

) =
∑

m

∑

n

(FOvw
− F̄Ovw

)(FHpq
− F̄Hpq

)

√

(
∑

m

∑

n

(FOvw
− F̄Ovw

))2(
∑

m

∑

n

(FHpq
− F̄Hpq

)2)
,

(3.17)

where F̄Ovw
is the mean of all element values in FOvw

and F̄Hpq
is the mean in FHpq

.

Based on (3.17), the probability that the hidden state Hpq generates the observed

state Ovw is then written as

P (Ovw|Hpq) =
R(FOvw

, FHpq
)

∑

R(FO, FHpq
)
, (3.18)

where O represents the set of all possible observed states corresponding to hidden state

FHpq
and

∑

P (O|Hpq) = 1. Therefore, the state observation probability matrix B

connecting hidden states and observed states can be expressed as B = P (O|H), which

covers the probability of each hidden state generating all observed states. Employing

the Baum–Welch method [74], the state transition probability matrix A and initial

state probability vector π can be estimated.

For the i-th user to be authenticated, we denote the HMM associated with the

time-varying operation actions as λi = (Ai, Bi, πi). The observed operation-action
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feature sequence is Oi = (ot1 , ot2 , · · · , otn) with otj ∈ F representing the operation-

action feature in time tj , j = 1, 2, · · · , n, under the length of the operation sequence

n. Using the forward algorithm [75], the probability P (Oi|λi) is then calculated to

authenticate the user’s identity under a given threshold.

2) Authentication decision

For each legitimate user, we develop his HMM-based one-class classifier and train

the classifier by using its corresponding positive sample set in (3.26). Thus, each

user is associated with one dedicated HMM-based one-class classifier to determine

his identity in our authentication approach. Given an unknown user X who claims

his identity is U , we use FX to denote his corresponding real-time operation-action

features, then the goal of our authentication is to determine whether the identity

corresponding to FX is U or not. Specifically, we set FX as the input of the one-

class classifier corresponding to user U , and then analyze the probability score of its

output to determine the claimed identity of user X . If we use Su(F
X , U) to denote

the similarity between operation-action features of user X and that of user U , then

the authentication decision can be formulated as

(U, FX) ∈











ture, Su(F
X , U) ≥ ϕ,

false, otherwise,
(3.19)

where ϕ is a predefined threshold for the concerned IIoT system. From (3.19) we can

see that when Su(F
X , U) is no less than ϕ, the claim of user X is true (a legitimate

user), otherwise the claim is false (i.e., user X is an attacker).

3.5 Performance Modeling

1) Performance Metrics and Analysis

To evaluate the performance of the proposed approach, we investigate three typ-
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ical performance metrics: FAR, FRR, and EER [26, 50, 51]. We also adopt the

authentication accuracy to evaluate the performance for resisting the impersonation

attacks of the proposed framework, here the authentication accuracy is defined as the

probability that the system successfully distinguishes between the legitimate users

and impersonation attacks.

Mathematically, the FAR and FRR can be formulated as follows according to

classification results of our proposed authentication process,

FAR =
FP

FP + TN
, (3.20)

FRR =
FN

TP + FN
, (3.21)

where TP, FN, FP, and TN represent the number of yielding true-positive classifi-

cation results when the samples actually are positive, the number of yielding false-

negative classification results when the samples actually are positive, the number

of yielding false-positive classification results when the samples actually are nega-

tive, and the number of yielding true-negative results when the samples actually

are negative in a test. We use (FX
i , Ui) to denote that the i-th unknown user X

with operation action feature FX
i claims that its identity is Ui, i ∈ [1, n], and use

§ = {(FX
1 , U1), . . . , (F

X
n , Un)} to denote the test sample set, here n is the number of

test samples in §. According to (3.19), we have

TP =
∑

S(FX
i ,Ui)≥ϕ

§ ∈ ω1, (3.22)

FN =
∑

S(FX
i ,Ui)≥ϕ

§ ∈ ω2, (3.23)

FP =
∑

S(FX
i ,Ui)<ϕ

§ ∈ ω1, (3.24)
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TN =
∑

S(FX
i ,Ui)<ϕ

§ ∈ ω2, (3.25)

where ω1 and ω2 denote the set of the claim of user X is true and false, respectively.

We use Sn×m to denote the training sample space with n samples and m labels,

use SLabi to denote all the samples with label Labi (i ∈ [1, m]) in Sn×m, and use S̄Labi

to denote other samples with other labels except Labi. In our designed classifier based

on HMM, we use Sn×m to generate m sub-sample sets denoted by Ssub,

Ssub = {







S
+
Lab1

S̄
−
Lab1






,







S
+
Lab2

S̄
−
Lab2






, . . . ,







S
+
Labm

S̄
−
Labm






}, (3.26)

where ’+’ and ’-’ denote positive sample label and negative sample label, respectively.

According to the m sub-sample sets in Ssub, we can obtain the set Ωλ of m HMM

models to create m one-class classifiers. From Section 3.4.4 we know that Ωλ is given

by

Ωλ = {λ1, λ2, . . . , λm}. (3.27)

By using the HMM models of the one-class classifiers in (3.27), (3.22)∼(3.25) can

be rewritten as

TP =
∑

max{P (FX
i |Ωλ)}≥ϕ

§ ∈ ω1, (3.28)

FN =
∑

max{P (FX
i |Ωλ)}≥ϕ

§ ∈ ω2, (3.29)

FP =
∑

max{P (FX
i |Ωλ)}<ϕ

§ ∈ ω1, (3.30)

TN =
∑

max{P (FX
i |Ωλ)}<ϕ

§ ∈ ω2, (3.31)
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where

max{P (FX
i |Ωλ)} = max{P (FX

i |λ1), . . . , P (F
X
i |λm)}. (3.32)

We can quantify the values of TP, FN, TP, and TN by calculating each element

P (FX
i |λj) in (3.32), j ∈ [1, m]. Based on the parameter estimation method of λj

and the forward algorithm in Section 3.4.4, P (FX
i |λj) can be determined through the

following procedures [75].

Step 1, Let FX denote the operation-action feature for the operation-action ob-

servation sequence from X , we have FX = OX = {o1, . . . , oL}, here Oj denotes the

j-th operation action feature for j = 1, . . . , L, and L is the length of operation-action

sequence. Given that HMM λ = (A,B, π) with λ ∈ Ωλ, we use αt(i) to denote the

forward probability when the observation sequence is (o1, o2, . . . , ot) and the state is

qi ∈ A. Thus, αt(i) is determined as

αt(i) = P (o1, o2, . . . , ot, it = qi|λ). (3.33)

We calculate initial value α1(i) as

α1(i) = πibi(o1), i = 1, 2, . . . , l, (3.34)

where o1 is the first observation value in the operation-action observation sequence

OX , πi ∈ π, and bi(·) ∈ B.

Step 2: Based on (3.34), the forward probability αt+1(i) through L − 1 iteration

(i.e., t = 1, 2 . . . , L− 1) can be obtained as

αt+1(i) = [

l
∑

j=1

αt(j)aji]bi(ot+1), i = 1, 2, . . . , L. (3.35)

Step 3: The probability P (OX|λ) of observation operation-action sequence OX is
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determined by

P (OX|λ) =
l

∑

i=1

αl(i). (3.36)

It is observed from (3.33)∼(3.36) that FAR and FRR depend on the HMM model

λ(·) and the operation-action length. The HMM model λ(·) captures the time-varying

nature of the isolated operation-action features, while the length of the operation-

action sequence determines the stability and distinguishability of user operation action

characteristics.

2) User Space Upper Bound Analysis

Generally, for a larger number of users there is a higher risk that two users would

have similar operation-action profiles [26]. To analyze user space upper bound, it

needs to construct user space model for authentication. Since operation-action char-

acteristics deviation from a user follows the normal distribution, the deviation be-

tween any two users’ operation-action characteristics also approximately follows the

normal distribution. Hence, for two user feature spaces Fa and Fb from users a and

b, the corresponding deviation of the feature space is denoted as D(a, b) = Fa − Fb

and we have D(a, b) ∼ N (µ, σ2), here N (µ, σ2) denotes a normal distribution random

sequence with mean µ and variance σ2. Thus, the feature space of user b is given by

F
b = F

a + D(a, b). (3.37)

Now we consider the more general case under given upper bounds of µ = µmax

and σ = σmax in (3.37). For an arbitrary user a, we use Fa+max and Fa−max to denote the

upper bound and lower bound of the feature space that has the minimum similarity

with Fa. Then Fa+max and Fa−max are given by

F
a+max = F

a + Dmax, (3.38)

F
a−max = F

a − Dmax, (3.39)
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where Dmax denotes a normal distribution random sequence with mean µmax and

variance σ2
max.

We consider that the sample spaces are uniformly distributed between Fa+max and

Fa−max with mean interval µmax

C
and standard deviation σ̇ = σmax

C
, where C is the

number of user features distributed around Fa. The i-th feature space between Fa+max

and Fa−max can be written as

F̈
a
i =











F
a + Di,Di ∼ N (µmax ∗

(C− i)

C
, σ̇2),

F
a − Di,Di ∼ N (µmax ∗

(i)

C
, σ̇2),

(3.40)

where i = 1, 2, . . . ,C.

Based on Fa+max and Fa−max , F̈a can be rewritten as

F̈
a =



































































F̄
a + Dmax + ~;

F̄a + DC−1 + ~;

F̄
a + DC−2 + ~;

. . .

F̄
a + DC−C + ~;

F̄
a − D1 + ~;

F̄
a − D2 + ~;

. . .

F̄
a − DC + ~;

F̄
a − Dmax + ~;



































































, (3.41)

where F̄a denotes the mean of the feature space, and ~ is the noise associated with

the IIoT scenario.

It is observed that as C increases, the similarity between elements in F̈a becomes
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MMD(F̈a
p, F̈

a
q) = [

1

m2

m
∑

i=1

m
∑

j=1

K(F̈a
p,i,

¨Fa
p,j)−

m
∑

i=2

m
∑

j=1

K(F̈a
p,i, F̈

a
q,j)+

m
∑

i=1

m
∑

j=1

K(F̈a
q,i, F̈

a
q,j)]

1

2 ,

(3.42)

small (i.e., it is much more difficult to distinguish each other in C). Therefore, it

is necessary to quantitatively measure the amount of the similarity. We here use

Maximum Mean Discrepancy MMD(F̈a
p, F̈

a
q) to quantify the similarity between any

two elements F̈a
p and F̈a

q in F̈a, and MMD(F̈a
p, F̈

a
q) is written as the equation (3.42)

[76], where K(·) is the Gaussian kernel function for mapping the feature vectors of

user operation actions to high-dimensional space.

Let R(F̈a|C) denote the average of MMD similarity of all the adjacent elements

in F̈a with user space being equal to C, we have

R(F̈a|C) =
1

C+ 1

∑

p adjacent q

MMD(F̈a
p, F̈

a
q). (3.43)

For a preset threshold φEER, the upper bound of user space C is denoted as Cupper =

max{C}, which satisfies

ǫ(S(F̈a, R(F̈a|C))) ≤ φEER, (3.44)

where ǫ denotes the authentication performance determined by EER, S is the HMM-

based one-class classifier, and R denotes the similarity of the user space.

Extensive simulations demonstrate that when the similarity R is no less than

2.76, the EER keeps under 10%. Fig. 3.7 shows that how the average of similarity R

changes with the size of the user space C, as well as the impact of operation-action

length on the user space upper bound Cupper. We can see that as the operation action

length varies from 7 to 10, the upper bound of user space increases from 59 to 103. It

indicates that the user space upper bound increases as the operation-action sequence
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length increases. The reason is that a longer operation-action sequence yields a better

stability and distinguishability of the user operation-action profiles, so increasing the

length of operation actions serves as an effective way to improve the upper bound of

user space in the practical applications of IIoT systems.
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Figure 3.7: R(F̈a|C) varies with user space C under operation-action sequence length
being equal to 7 and 10.

3.6 Experiment and Analysis
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3.6.1 Data Acquisition

To verify the effectiveness and stability of the proposed approach in practical

applications for various IIoT scenarios, we develop an application which runs as a

background and transparent process to collect sensor data during the user routine

work process. We are allowed to run the designed application and assemble data from

the manufacturing plant of Anhui YouKaiPu Electronics Co., Ltd (which is Industrial

4.0 oriented). Table 3.3 lists main experiment data collected from routine operation

actions (i.e., walking, scanning, screen-touch, and photographing-uploading) for users

(volunteers) who are working in the production process of ‘aluminum electrolytic

capacitor’. We collect the sensor data corresponding to each concerned operation

action according to the timestamp when the action occurred. In dataset ♯1, we collect

800 sequences of operation actions in diverse interference scenarios (i.e., ROE, ME,

Glo, and FPC) to construct operation-action features for 104 users. A sequence of

operation actions is the random combination of the four typical operation actions and

the length of that is 9. In dataset ♯2, we collect 600 (trials) sequences of operation

actions for 123 users and take the length of the operation action sequence from 2 to

15.

3.6.2 Experimental Setting

Based on the HBuilderX development environment running in the background

of Android mobile devices, we develop an APP to obtain raw sensor data from the

APIs provided by the SDK of the Android operation system. The raw sensor data is

transferred in real time to the virtual machine, which is running the Windows Server

2008 R2 operation system of the OpenStack private cloud platform. In the virtual

machine, we use the Microsoft SQL Server 2008 R2 database to store the raw sensor

data, and employ the Matlab R2019a and Microsoft Visual C++ to implement the

proposed passive user authentication method.
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For the ROE scenario, we adopt the HUAWEI Mate20 X (5G) mobile phone as

an industrial mobile device, which has rich resources such as strong computing power

and large storage to meet the demands of industrial data processing. For other three

scenarios, we conduct data processing using the industrial customized Huawei Honor

Play3 smartphone, which serves as the special equipment for workshop.

3.6.3 Authentication Performance

In order to show the authentication performance, the HMM-based classifier is

compared with two other popular classifiers (i.e., LIBSVM [77] and RBFNN [78])

under the proposed passive authentication framework in Section 3.4. For the LIBSVM

classifier, we set the SVM type as ‘one-class SVM’ and the type of kernel function

as ‘radial basis function’ [45] to satisfy the category requirements of a large number

of users in the practical IIoT scenarios. For the RBFNN classifier, a three-layer

neural network [26] is created with n input nodes, 2n hidden nodes, and n output

nodes, where n is feature dimensionality. We combine multiple feature matrices (i.e.,

feature matrices of walking, scanning, screen-touch, and photographing-uploading)

by concatenating them into one single feature matrix [45]. We then feed 60% random

rows of the feature matrix into LIBSVM and RBFNN classifiers for training. Finally,

the trained classifiers are used to verify new unknown data samples and thus determine

identities of users.

Table 3.4: EER values of different classifiers

classifier

EER (%) Scenario
ROE ME Glo FPC

HMM 4.16 5.74 7.79 8.97
LIBSVM 5.35 8.35 11.08 16.8
RBFNN 7.01 9.65 13.73 18.4

Extensive experiments have been conducted to verify authentication performance

based on the dataset #1 in Table 3.3. By setting the number of random operation
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Figure 3.8: ROC curves of the proposed authentication approach for four operation-
action scenarios under three types of classifiers. (a) ROE scenario. (b)
ME scenario. (c) Glo scenario. (d) FPC scenario.
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actions for authentication decision as 9, we plot in Fig. 3.8 the ROC curves of three

classifiers (i.e., HMM, LIBSVM, and RBFNN) under four IIoT scenarios (i.e., ROE,

ME, Glo, and FPC). It is observed from Fig. 3.8 that under the proposed passive

authentication framework, the proposed HMM-based classifier outperforms the others

in terms of ROC curves while the RBFNN classifier provides the worst authentication

performance under the four IIoT scenarios. Specially, when FAR equals to 8%, the

HMM-based classifier leads to an FRR of 3.8% and 5.27% for the ROE and ME

scenarios, respectively. Even for the Glo and FPC scenarios with strong interference,

the HMM classifier can still achieve an FRR of 7.46% and 10.7% when FAR=8%.

These results indicate that the HMM-based classifier is promising to adapt to various

complicated IIoT environments.

Another observation from Fig. 3.8 is that all the three classifiers achieve the

best authentication performance in ROE scenarios, while the best FRRs provided

by classifiers LIBSVM and RBFNN are 4.73% and 7.04% when FAR=8%. This

is mainly due to the fact that the proposed HMM-based classifier not only utilizes

the isolated operation-action features of user actions, but also captures the time-

varying nature and dynamic properties of sequential operation actions during the

user’s routine industrial production process. Conversely, both LIBSVM and RBFNN

classifiers ignore time-varying nature and dynamic properties of operation actions

from the user’s routine production process in IIoT scenarios, leading to the worse

authentication performance. Thus, our proposed authentication approach exhibits a

good applicability and robustness in IIoT environments.

Table 3.4 illustrates that our proposed HMM-based classifier has the best authen-

tication performance in terms of EER for all four scenarios, while the authentication

performance based on LIBSVM is relatively better than that of RBFNN. Specifi-

cally, the EER value under the HMM-based approach is always less than 9% across

four IIoT scenarios. Consequently, the proposed authentication framework under the

58



HMM-based classifier can provide more accurate and robust authentication services

for the IIoT system. In addition, it is notable that the HMM-based classifier is com-

petitive with the classifier in [26] for passive user authentication, where the best EER

value even tends to 4% in the scenarios with less interference. This further demon-

strates that the operation-action features generated from the routine work process of

users are highly distinguishable, so the operation actions can be exploited to perform

authentication in IIoT scenarios.

In summary, under all four scenarios considered above, our proposed HMM-based

classifier outperforms the LIBSVM and RBFNN classifiers in terms of both the EER

value and the ROC curve. Also, we can see from the Fig. 3.8 and Table 3.4 that

the ROC curves are always distributed in the lower left corner of the two-dimensional

coordinate system and the EER values are always less than 18.4% under each IIoT

scenario, indicating that the concerned operation-action features can be used to effi-

ciently characterize the identity of a user and thus can be leveraged to perform passive

authentication in IIoT scenarios with different interferences. Therefore, the opera-

tion actions generated during the user’s routine work might be explored to enhance

the traditional authentication methods such as pin-based and pattern-based, and the

proposed passive authentication method may serve as a promising alternative to the

traditional ones for some special application scenarios like Industrial Internet.

3.6.4 Performance of Resisting Impersonation Attacks

To investigate the performance of resisting impersonation attacks for the proposed

passive user authentication approach, we first randomly select 30 users from dataset

♯2 as impersonation attacker (IA) group and further randomly select 30 users from

the remaining dataset ♯2 as legitimate user (LU) group. We then conduct the one-

to-one randomly pairing between users in the IA group and LU group, and each

user in the IA group will impersonate the operation actions of his corresponding
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Figure 3.9: Performance of resisting impersonation attacks for the proposed passive
user authentication approach. (a) ROC curves. (b) Accuracy.

pair in the LU group. To ensure that adversaries in the IA group are fully familiar

with the legitimate users’ action behavioral habits and the amplitude of the action

space, the adversaries are arranged to work in the same production process as the

legitimate users and repeatedly impersonate the legitimate users’ operation actions

at least 10 times one day for no less than 3 days. Specially, for the ROE scenario,

we collect 10 sequential operation action sequences from each user of the two groups

to obtain an operation action dataset with impersonation attacks. Finally, we apply

the proposed passive authentication approach to perform user authentication based

on the impersonation attack dataset.

To show the performance of resisting impersonation attacks for the proposed au-

thentication approach, we present in Fig. 3.9(a) the impact of impersonation attacks

on authentication performance in terms of ROC curves based on the impersonation

attack dataset with operation action length l = 9. As observed from Fig. 3.9(a),

the authentication performance in terms of ROC is always distributed in the lower

left corner of the two-dimensional coordinate system and the EER value is less than

4.3%, thus the proposed authentication approach exhibits good discriminability and

stability for resisting impersonation attacks.
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We further present in Fig. 3.9(b) the authentication accuracy performance under

the impersonation attack dataset with l = {7, 9, 11, 13}. It is observed from Fig.

3.9(b) that the accuracy of the proposed authentication approach is 94.7%, 95.1%,

96.6% and 97% under operation action lengths of 7, 9, 11 and 13, respectively. The

results in Fig. 3.9(b) indicate that the proposed user authentication approach achieves

an excellent performance for resisting impersonation spoofing attacks, and adopting a

longer operation-action sequence length will lead to a better authentication accuracy.

3.6.5 Authentication Stability Analysis
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Figure 3.10: EERs vary with the length of operation-action sequence. (a) EER vs.
length of operation-action sequence for four operation-action scenarios.
(b) Anti-interference capability of the proposed framework in the ME
scenario.

Same as [26, 45, 52], we adopt the EER metric to characterize the authentication

stability against spoofing attacks and show in Fig. 3.10(a) the corresponding results,

which are obtained based on the dataset ♯2 in Table 3.3 with randomly selected 63 sub-

jects from various IIoT scenarios. One can see from the Fig. 3.10(a) that for the four

scenarios concerned, the EER of the proposed authentication approach monotonously

decreases as the operation-action sequence length increases from 2 to 15, but such

trend becomes less significant if we increase the sequence length further. It indicates
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that when the operation-action sequence length is relatively small, we can get a signif-

icant improvement in the authentication performance in terms of EER by increasing

the sequence length, but a too large sequence length might not be cost efficient since

using more operation actions in the observed sequences will lead to a long authenti-

cation time without yielding a significant authentication performance enhancement.

Therefore, it is wise to select a suitable operation-action sequence length for various

IIoT applications with different authentication performance requirements.

To show the anti-interference capability for the proposed authentication approach,

we present in Fig. 3.10(b) the impact of interference on authentication performance

in terms of ROC curves based on the dataset ♯2 in Table 3.3 in the ME scenario.

It is observed from Fig. 3.10(b) that under the proposed passive authentication

framework, the proposed HMM-based classifier using Kalman filtering and Wavelet

de-noising outperforms the classifier without anti-interference in terms of ROC curves.

Specially, when the length of operation-action sequence is less than 10, the EER value

of the classifier without anti-interference fluctuates greatly, and when the length is

greater than 10, the EER value of the classifier using Kalman filtering and Wavelet de-

noising is always lower than that of the classifier that does not apply anti-interference.

We can see that the passive authentication framework designed in this thesis can well

weaken or eliminate various interference and noise in the industrial environment, so

as to meet the requirements of the ME layer for anti-interference capability.

3.6.6 Scalability to the Number of Features and User Space

1) Scalability to the Number of Features

To evaluate the scalability to the number of features for the HMM-based authen-

tication approach, we present in Fig. 3.11(a) the impacts of user space size and

number of features on EER by varying user space size from 13 to 63 and considering

four different combinations of features (case 1: utilizing only walking feature; case
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2: jointly utilizing walking and scanning features; case 3: jointly utilizing walking,

scanning and screen-touch features; and case 4: jointly utilizing walking, scanning,

screen-touch and photographing-uploading features). For the sake of clarity, we con-

sider here the ME scenario with operation-action sequence length 7 and randomly

selected 63 users in dataset ♯2.
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Figure 3.11: EERs vary with the number of features and user space. (a) EERs vary
with the number of features under different user space. (b) EERs vary
with the ratio of users for authentication under operation action length
being equal to 7 and 10 in the ME scenario (The total number of users
is 63).

As observed from Fig. 3.11(a), the authentication performance of case 4 signifi-

cantly outperforms that of other cases, while the case 1 leads to the worst authenti-

cation performance. It indicates that utilizing more operation-action features usually

leads to a more accurate characterization of user identities. Also, we can see from

Fig. 3.11(a) that by setting user space size to be less than 63, the corresponding EER

values of case 1, case 2 and case 3 are under 13.6%. This demonstrates that for a

relatively small user space size, three-dimensional operation-action features might be

enough to effectively discriminate user identities in IIoT scenarios.

In addition, it can be seen from Fig. 3.11(a) that the EER of each case increases as

user space size increases. In particular, as user space size increases from 13 to 63, the
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EER of case 1 increases from 8.97% to 13.55%, the EER of case 2 increases from 7.66%

to 12.96%, the EER of case 3 increases from 5.47% to 11.66%, while the EER of case

4 only increases from 4.11% to 9.91%. Thus, as the user space size increases, jointly

utilizing multiple dimensional operation-action features is helpful for maintaining a

better authentication accuracy in practical applications of IIoT systems.

2) Scalability to User Space

To evaluate the scalability to user space for the HMM-based authentication ap-

proach, we present in Fig. 3.11(b) how EER varies with the user space size in the ME

scenario by considering randomly selected 63 users in dataset ♯2 and the operation-

action length of {7, 10}. The results show that in general EER increases as the size

of the user space increases. Specifically, when the user space size increases from 40%

to 100% the EER increases from 5.64% to 10.07% under the sequence length of 7.

It indicates that the user space upper bound is close to 63 with the constraint of

EER < 10% and sequence length of 7, which agrees with the mathematical analysis

in Section 3.5. Another observation from the Fig. 3.11(b) is that the EER under the

sequence length of 10 only increases from 5.09% to 7.89%, so increasing the operation

action sequence length is an effective method to expand the upper bound of user

space. Actually, we can see from the simulation result in Fig. 3.7 in Section 3.5 that

the upper bound of user space would be 102 under the sequence length of 10 and the

constraint of EER < 10%.

To sum up, the EER increases as the user space becomes large under a given

operation action length, and a longer operation-action sequence can lead to a larger

upper bound of user space. Therefore, we can obtain a larger upper bound of user

space by increasing the length of operation actions in practical applications for various

IIoT scenarios.
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3.6.7 Sensitivity to Operation-action Features

We explore how the proportion of a certain action feature (the ratio of the number

of certain action feature to the total number of action feature in the observed sequence

used for authentication) would affect the performance of the proposed HMM-based

authentication approach. For brevity, we only show the impact of the screen-touch

action proportion on the authentication performance across the four IIoT scenarios.
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Figure 3.12: EERs vary with the percentage of screen-touch.

As shown in Fig. 3.12, the EER values in Glo and FPC scenarios quickly increase

when varying the proportion of screen-touch actions from 10% to 80%. However, the

EER values in ROE and ME scenarios tend to decrease slightly when the screen-

touch action proportion increases. This may be due to the fact that in Glo and FPC

environments, the user’s touch behaviors are generally accompanied by interference

from gloves and full-body protective clothing worn by the user, which causes touch

behavior deformation (such as great amplitude and strong randomness). As a result,

the originally stable screen-touch actions become difficult to be captured accurately,

which degrades the authentication performance. Thus, by reducing the proportion of

screen-touch actions we can effectively improve the performance of authentication in

Glo and FPC scenarios. In contrast, in ROE and ME scenarios, increasing the propor-

tion of screen-touch is beneficial to the improvement of the performance. Therefore,
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it may be a good choice to enhance the accuracy and stability of the proposed ap-

proach by adaptively adjusting the proportion of some actions in various application

scenarios of IIoT systems.

3.6.8 Sensitivity to Authentication Time

The authentication time is defined as the time required for the total authentication

process, which can be calculated based on the time cost of each process involved in our

authentication framework. In the process of raw data collection and preprocessing,

our authentication framework first determines the operation-action sequence length l

to collect the sensor data used for authentication. Since the data collection as well as

its preprocessing are conducted in real time, an empirical setting of the corresponding

time consumption Tcol is Tcol < 0.2s. In the feature construction process for operation

actions, the operation actions of walking, scanning, screen-touch, and photographing-

uploading take about 0.9s, 1.2s, 1.4s, and 1.6s, respectively. Hence, we can obtain the

average time consumption of an operation action in the feature construction process

as Tcon = 1.28s. Regarding the time cost Tdim of the dimensionality reduction process

for operation-action features and the time cost Tpas of the passive authentication

process, an empirical setting under operation action length l ≤ 10 is given as Tdim <

0.5s and Tpas < 0.8s [26, 40].

To sum up, the time consumption of our proposed passive authentication approach

is no larger than 10.46s and 14.3s under the operation-action sequence length of

l ≤ 7 and l ≤ 10 respectively. Such time cost is acceptable to secure the sensitive

information in various scenarios of the IIoT system.

3.7 Discussion

For IIoT authentication scenarios with high anti-interference capability require-

ments, we explore the common behavioral biometrics from sequential operation ac-
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Figure 3.13: Various sensor data triggered by operation actions during user routine
work processes through Android smartphone in IIoT systems.

tions in IIoT systems and leverage the Kalman filtering and Wavelet techniques for

noise elimination to propose a passive authentication framework for continuous and

non-intrusive user authentication against the impersonation attack. As shown in Fig.

3.13, we collect real-time raw data from built-in sensors of mobile devices to depict

user operation action features during user routine work processes. Hence, whether

sensor data can be accurately collected determines whether we can accurately depict

the characteristics of user operation actions, and then determine the authentication

performance of the entire user authentication protocol. However, during the practical

application of IIoT, there is a lot of electromagnetic interference and noise generated

by the interaction of electronic components on the IIoT site. This interference and

noise will interfere with the collection of the sensor data, making a certain difference

between the collected sensor data and the true value of the sensor.

In various practical IIoT scenarios, we leverage a Kalman filter and Wavelet de-

noising to reduce the noise along with the data. The interference removal performance

is shown in Fig. 3.3 and Fig. 3.4. We can see from Fig. 3.3 that constant noise (i.e.,
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gravity components and invariable magnetic fields) in IIoT scenarios can be effec-

tively reduced through Kalman filtering. Since Kalman filtering is recursive and can

run in real time, it can meet the real-time and high-efficiency authentication require-

ments in IIoT systems. We can see from Fig. 3.4 that the wavelet function Symlets

under the threshold function Heursure is more efficient than Coiflets, since it re-

duces the non-stationary noise and interference while retaining the intrinsic feature

of raw sensor data. Therefore, we adopt here the wavelet function Symlets under

the Heursure threshold to achieve the optimal authentication performance of the

proposed approach. More importantly, for the IIoT scenarios with high requirement

on anti-interference capability we present in section 3.6 that the new authentication

framework enables a flexible authentication performance control to be achieved by

adjusting the system parameters like the length of operation sequence, number of

features, size of user space, and the proportion of a certain action feature.

However, real IIoT scenarios are extremely complex. The user’s actions are far

more than the four described in this work, and there are many types of interfer-

ence, smart devices, and sensors in IIoT scenarios. For simplification, we developed

a passive user authentication prototype system where the IIoT scenarios exit some

simple constant noise (e.g., gravity components and invariable magnetic fields) and

non-stationary interference (e.g., radio frequency signals, changing current and mag-

netic field) that can be eliminated by simple filtering and denoising algorithms. Our

experiments only use mobile smartphones and corresponding built-in sensors to col-

lect sensor data triggered by 4 common operation actions in IIoT scenarios. In the

subsequent research, we will consider more complex noise and interference scenarios

in IIoT scenarios, and develop more diverse filtering and denoising algorithms to meet

the IIoT authentication requirements with high anti-interference capability.

In the process of user operation action feature enrollment, when a new user joins

the authentication system, we require the user to complete specific operation actions
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according to certain operation procedures, thereby completing user behavioral bio-

metric enrollment and storage. In future work, we will further research and develop

the dynamic registration and update method of user operation action features to

improve the usability of the authentication framework.

3.8 Summary

For IIoT authentication requirements of high anti-interference capability in the

ME layer, this work proposed a novel passive user authentication framework by ex-

ploiting the behavioral biometrics from user sequential operations in IIoT systems.

We demonstrated that the new framework enables a flexible authentication perfor-

mance control to be achieved by adjusting the system parameters like the length of

operation sequence, number of features, size of user space, and the proportion of

a certain action feature. Thus, the proposed framework is promising for satisfying

different performance requirements across various IIoT scenarios. Moreover, it is ex-

pected that the proposed authentication framework with the HMM-based classifier

can serve as a good enhancement and complement to the traditional authentication

solutions for IIoT systems.
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CHAPTER IV

Authentication Utilizing Consecutive Touch

Trajectory Features for the Monitoring and

Control (MC) Layer

4.1 Background and Related Work

The basic functions of the MC layer are real-time access control, command trans-

mission, data exchange, data interoperability, modeling, and identification analysis.

In the MC layer, IIoT receives the product manufacturing and optimization solutions

from the upper layer (i.e., the DO layer), and quickly generates product models. At

the same time, this layer collects on-site production element information (people,

materials, manufacturing methods, and environment) from the ME layer to form all

instructions and data structures for product manufacturing. So we can see that the

MC layer often involves critical human-computer interaction, access control, com-

mand transmission, and data exchange in IIoT systems, where there are a large

number of important real-time instruction uploading and downloading, user access

control, and manufacturing process monitoring. In order to ensure the timeliness and

real-time of instruction transmission and information collection, the authentication

protocol at this layer needs to have real-time performance guarantee.
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By now, some research efforts have been devoted to the touch-based behavioral

biometric authentication solutions with real-time performance guarantee, such as

keystroke patterns-based authentication [42–44], gait-based authentication [45, 46],

speaking-based authentication [47, 48] and touch-based authentication [35, 49, 79, 80].

The literature [52] investigates touch movements of user interacting with the touch-

screen of a smartphone to obtain a set of 30 touch-based behavioral biometric features,

and demonstrates that different users populate distinct subspaces of the touch-based

feature space. Then, an SVM-based classification technology is applied to verify

user identities continuously based on touch-based behavioral biometric features. The

authors in [34] conduct sufficient experiments to illustrate the discriminability and

robustness of the intrinsic features from consecutive operation actions (e.g., walking,

scanning, screen-touch, and photographing-uploading), the Hidden Markov Model

is adopted to determine user identities passively utilizing the one-class classification

technique. In [26], smartphone internal sensors are used to measure the behavioral

activity characteristics of users when they perform touch actions on the touchscreen

of smartphones. Statistic-, frequency-, and wavelet-domain features are extracted

from sensor values corresponding to these touch actions to realize continuous user

authentication across various operational scenarios.

4.2 Motivation

It is notable that for the MC layer of IIoT, the touch-based behavioral bio-

metric authentication is of particular interest for implementing the continuous and

non-intrusive user identity verification. First, due to the increasing development

of touchscreen-based devices, IIoT systems usually involve a large number of screen-

touch operations during user interacting with their MTs, so user behavioral biometric

features can be explored from these screen-touch behaviors to perform user authen-

tication without requiring additional user actions or equipments for the purpose of
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authentication. Second, an MT needs a continuous authentication mechanism that

can protect a user throughout the entire working session, which complements the

initial-login authentication to provide more comprehensive security protection. More

importantly, our experiments show that touch-based behavioral biometric authenti-

cation methods can meet the requirements of the MC layer for real-time performance

guarantee. Thus, we are motivated to design a flexible and cost-effective touch-based

authentication approach for continuous and non-intrusive authentication in IIoT sys-

tems.

In this chapter, we explore the user consecutive screen-touch actions during routine

work processes and propose a more advanced passive authentication method based

on both the time-varying characteristics and spatial image characteristics of the user

touch trajectory sequences for implicit and non-intrusive user identity verification.

In particular, by exploiting touch trajectory sequences constructed through touch

trajectories with different velocities from the user routine work process and adopting

the HMM to model these sequences, we develop a new method to characterize the

behavioral biometric characteristics of users in IIoT scenarios. We then reconstruct

each touch trajectory in an image to maintain the shape, relative position and length

of the touch trajectory, and adopt average pressure, average curvature and average

deviation degree to depict its RGB color in the image. We further design two classifiers

corresponding to the above two characteristics. By weighing the outputs of these two

classifiers, we thus develop a novel user authentication framework for continuous

user authentication in IIoT scenarios. Finally, we conduct extensive experiments to

evaluate the performance of the proposed authentication framework in terms of false

acceptance rate, false rejection rate and equal error rate, and also examine the related

authentication efficiency issues such as the sensitivity to the weights for classifiers, the

sensitivity to authentication time and the capability of resisting against impersonation

attacks.
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4.3 Problem Formulation

Figure 4.1: IIoT system, where a manufacturing cloud platform exchanges the infor-
mation involved in industrial production business through MTs with a
large number of users in the presence of one potential adversary.

4.3.1 Network Model

As illustrated in Fig. 4.1, we consider an IIoT system, where a large number

of users use MTs to exchange the information involved industrial production busi-

ness with a manufacturing cloud platform in the presence of one potential adversary.

The manufacturing cloud platform provides diverse services (e.g., intelligent manufac-

turing) for these users simultaneously. The enormous confidential information (e.g.,

control instructions, business confidential data, and core technologies) is frequently

exchanged between the cloud platform and users through the MTs. Due to the open

nature of the shared transmission medium, a potential adversary attempts to mas-

querade as any legitimate user by using the identity of the user in order to inject

harmful data and/or attain the information on business confidential data and core

technologies, etc.

It is worth noticing that for a given IIoT system, a user generally is engaged
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in specific work business according to WIs, and interacts with the cloud platform

by performing some common screen-touch operation actions (e.g., sliding up, sliding

down, sliding left, and sliding right) on the touchscreens of MTs during routine work

processes. Unlike daily interaction with personal mobile smart phones, a user gener-

ally interacts with the industrial MT according to designated WIs, which are guiding

documents specially prepared to complete a certain or the same type of work and

generally specify work contents and work flow in IIoT systems. For example, a WI

for starting a motor through the industrial APP is: opening the motor control page,

starting the motor self-test, viewing the self-test messages, motor exception handling,

abnormal diagnosis, confirming the motor is intact, and turning on the motor switch.

For a user, its consecutive screen-touch trajectory sequence is a series of consecu-

tive touch trajectories generated by the user’s interaction with the MTs in order to

complete the contents specified in WIs. It is proven through extensive experiments

with commercial MT devices that a consecutive screen-touch trajectory sequence un-

der a specific WI from a user can reflect spatial-temporal information of behavioral

biometric characteristics for the user. Specifically, we investigate 3675 screen-touch

trajectory sequences with sequence lengths from 6 to 17 involving 50 users in IIoT sce-

narios, and demonstrate that the consecutive screen-touch trajectories are the state-

of-the-art solution for user identity characterization in the complex IIoT systems.

We provide in Fig. 4.2(a) the differences of time-varying properties from random

3 users, and present in Fig. 4.2(b) the Pearson Linear Correlation Coefficients of

STTI features from the same users and different users [81, 82]. We can see from Fig.

4.2 that these consecutive screen-touch trajectories under the IIoT WIs during user

routine work process pose unique spatial-temporal variation characteristics among

users, and thus can be employed to authenticate users from accessing to the sensitive

information of the IIoT system.

To comprehensively examine the availability and practicability of the proposed
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Figure 4.2: The differences of time-varying properties and STTI features from users
under a specific WI. (a) Observed touch trajectory style sequences from
random 3 users. (b) Pearson Linear Correlation Coefficient of STTI fea-
tures from the same users and different users.

approach, we consider two common IIoT scenarios: ROE and ME. In the ME sce-

nario, the WIs are generally detailed and rigid, which roughly stipulates the operation

processes, operation targets, and even operation methods during production business

processes. In contrast, the requirements of WIs in ROE scenarios are relatively loose,

and users can obtain a higher degree of freedom in their screen-touch operation.

Based on the above experimental results and analysis, one can see that the spatial-

temporal information of consecutive screen-touch trajectory sequences can be utilized

to effectively characterize the identity of the user. Therefore, the goal of the manufac-

turing cloud platform is to decide whether the user currently using MTs is a legitimate

user or not, by exploiting the fine-grained features from the series of operation actions

on the touchscreen of the MTs.

4.3.2 Threat Model

In the concerned network model, an attacker has access to physical MTs and

can capture corresponding passcodes (e.g., smart cards, patterns, and fingerprints)

to unlock MTs. Meanwhile, the attacker may be familiar with the business process

and behavioral habits of the legitimate users, and attempt to access the IIoT system
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through MTs by using identities (e.g., passcodes or other proofs) of legitimate users.

As a result, sensitive information involving commercial confidentiality is typically

exposed to the attacker through these MTs.

Table 4.1: Common styles of touch trajectories
Touch

actions
Description

Tsu,sl
⋆, Tsu,no, Tsu,fa sliding up slowly, sliding up normally, sliding up fast

Tsd,sl, Tsd,no, Tsd,fa
sliding down slowly, sliding down normally, sliding
down fast

Tsl,sl, Tsl,no, Tsl,fa
sliding left slowly, sliding left normally, sliding left
fast

Tsr,sl, Tsr,no, Tsr,fa
sliding right slowly, sliding right normally, sliding
right fast

⋆ : According to the touch speed of user sliding of the touchscreen, we employ the k-
means clustering to divide the user’s touch trajectories in a certain direction into three
styles, i.e., sliding slowly, sliding normally and sliding fast.

4.4 User Identity Characterization Based on Consecutive Touch

Trajectories

The focus of this section is mainly on designing a new authentication method

utilizing the spatial-temporal characteristics of consecutive screen-touch trajectory

sequences. We first characterize user identities based on time-varying characteris-

tics and STTI characteristics of consecutive screen-touch trajectory sequences, and

then apply the two characteristics to develop the corresponding classifiers. Finally,

by jointly using the two designed classifiers, we present a weighted continuous user

authentication method for the considered IIoT system.
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4.4.1 User Identity Characterization Based on Time-varying Touch Tra-

jectory Sequence

We divide touch trajectories involving a user into 12 types (as shown in Table 4.1)

according to the sliding direction and speed of the touch trajectories. For a given

WI, we then adopt the HMM to model the time-varying features of the successive

touch behavior trajectory sequences, and determine user identities using the extracted

behavior features.

We use TDir,Spe to denote the type of a touch trajectory with Dir and Spe rep-

resenting the set of direction and speed of the touch trajectory, respectively. For

simplification, let Dir ={su, sd, sl, sr} with su, sd, sl, and sr being sliding up,

sliding down, sliding left, and sliding right, respectively. For the trajectories in a

certain direction (e.g., su), we further divide the user’s touch trajectories into three

types by employing the k-means clustering model proposed in [83], i.e., Spe ={sl, no,

fa} with sl, no, and fa being slow sliding, normal sliding, and fast sliding, respec-

tively. Hence, as shown in Table 4.1 we can obtain 12 types of trajectories. We use

Φ = {φ1, · · · , φM} to denote the set of M styles of touch trajectories listed in Table

4.1 with φm ∈ Φ being a certain touch trajectory style, for m = 1, · · · ,M , and use

Ψ = {ψ1, . . . , ψN} to denote the set of N work contents with ψn ∈ Ψ being a work

content specified in a WI (e.g., opening the motor control page, starting the motor

self-test, and viewing the self-test messages), for n = 1, · · · , N .

4.4.1.1 Time-Varying Screen-Touch Action Events

Given a specific WI, the resulting touch trajectory sequences from different users

can reflect different temporal variation levels due to the individual differences such as

muscle movement ability, operation habits, reaction speed, and knowledge level. As

shown in Fig. 4.3, we adopt HMM to model the time-varying nature of user sequential

touch trajectories.
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Figure 4.3: Network model for IIoT scenarios.

In particular, we use O = (o1, · · · , oL) to denote a touch trajectory sequence

according to the WI, where L is the length of the sequence and oi ∈ Φ denotes

the i-th touch trajectory style in O, for i = 1, · · · , L, and use S = (s1, · · · , sL) to

denote work content sequences of the WI with sj ∈ Ψ denoting the j-th business

content in the WI, for j = 1, · · · , L. si can be viewed as a hidden state, which is not

directly observable. Touch trajectory oi that can be observed directly through the

touchscreen of an MT is generated by the state si through a probabilistic function of

the HMM. Therefore, O and S are referred as observation state sequence and hidden

state sequence in the HMM, respectively.

4.4.1.2 Training of HMM

Similar to that in [26], we also adopt the standard HMM to model the time-varying

nature of consecutive touch trajectory sequences, that is, λ = (π,A,B), where π is

the initial state matrix, A is the state transition matrix, and B is the observation

matrix. We now present the expressions for π, A, and B. Concretely, we use πi

to denote the probability that the Markov chain will start in state ψi, use aij to

denote the probability of transition from state ψi (i = 1, · · · , N) at time t to state ψj

(j = 1, · · · , N) at time t+1, and use bj(k) to denote the probability of an observation

φk (k = 1, · · · ,M) being generated from a state ψj . Then we have
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π = (πi) = (P (si = ψi)), i = 1, · · · , N, (4.1)

A = [aij ]N×N = [P (st+1 = ψj |st = ψi)]N×N ,

i = 1, · · · , N, j = 1, · · · , N, (4.2)

B = [bj(k)]N×M = [P (ot = φk|st = ψj)]N×M ,

j = 1, · · · , N, k = 1, · · · ,M. (4.3)

Let αt(i) denote the forward probability when the observation sequence is {o1, o2, · · · , ot}

and the state is ψi at time t, and then we have

αt(i) = P (o1, o2, . . . , ot, st = ψi|λ). (4.4)

We use βt(i) to denote the backward probability [84] when the observation sequence

is {ot+1, ot+2, · · · , oT} from time t+1 to T and the state is ψi at time t, and then we

have

βt(i) = P (ot+1, ot+2, . . . , oT |st = ψi, λ). (4.5)

Applying the Baum-Welch algorithm [85], the HMM training process is summa-

rized in Algorithm 1.
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Algorithm 1 HMM training algorithm

Input: O = (o1, · · · , oL)
Output: λ = (A,B, π)

Initialisation :
1: For n=0, we set λ(0) = (A(0), B(0), π(0)).

Loop Process
2: for n = 1 to L do
3: calculate:

4: A(n+1) = a
(n+1)
ij =

L−1∑

t=1

ξt(i,j)

L−1∑

t=1

γt(i)

,

5: B(n+1) = bj(k)
(n+1) =

∑

t=1,ot=φk

γt(j)

L∑

t=1

γt(j)

,

6: π(n+1) = γ1(i),
7: where

γt(i) =
αt(i)βt(i)

P (λ|O)
=

αt(i)βt(i)
N
∑

j=1

αt(j)βt(j)

,

ξ(i, j) =
P (st = ψi, st+1 = ψj , O|λ)

P (OL|λ)

=
P (st = ψi, st+1 = ψj , O|λ)

L
∑

i=1

L
∑

j=1

P (st = ψi, st+1 = ψj , O|λ)

.

8: end for
9: return λ(n+1) = (A(n+1), B(n+1), π(n+1))
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4.4.1.3 User Identity Verification Based on HMM

Based on the training process of HMM in Section 4.4.1.2, we can obtain the

HMM for each user involved in the IIoT system, and authenticate the user identity

through probability calculation for a given trajectory sequence. In particular, we use

ℵ = (χ(1), . . . , χ(N1)) to denote the set of screen-touch trajectory sequences from N1

users in the IIoT system, where χ(i) is the screen-touch trajectory sequences dataset

of the i-th user, for i = 1, . . . , N1. Based on ℵ, we utilize Algorithm 2 to train the

HMM for each user, and obtain the set of HMMs λ which consist of HMMs of N1

users. Thus, λ is given by λ = (λ1, · · · , λN1
), where λi is the HMM of the i-th user

estimated through χ(i).

Given an unknown touch trajectory sequence Ou, we calculate a probability vector

ν = (P (Ou|λ1), · · · , P (O
u|λN1

)), (4.6)

where P (Ou|λi) is the probability that the touch trajectory sequence Ou is most likely

to be generated by λi according to forward algorithm [75]. In this work, ν is used to

verify user identity based on a threshold predefined in the IIoT system.

4.4.2 User Identity Characterization Based on STTI

We explore the STTI features formed by consecutive touch actions of a user to

characterize his identity for continuous user authentication across various IIoT ap-

plication scenarios. Given a specific WI in IIoT production process, the consecutive

touch trajectories from different users during routine work process could generate

different images in the touchscreen, which can characterize unique behavioral charac-

teristics of the individuals. We extract user behavior biometric features from STTIs of

user touch actions, and conduct a systematic exploration of the stability and discrim-

inability of these features. We then develop an XGBoost-based decision procedure
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using one vs. all multi-class classification techniques to perform user authentication.

Consecutive 

Touch Trajectories 

under a WI

Consecutive 

Touch Trajectories 

under a WI

Figure 4.4: STTI consists of 9 trajectories (i.e., L = 9).

4.4.2.1 Construction of STTI

To depict the touch trajectory characteristics of length, shape, position, pressure,

curvature, orientation, and superimposed effect of multi-touch trajectories formed by

user routine touch actions, as shown in Fig. 4.4 we construct an STTI from the screen-

touch trajectory sequence O = (o1, · · · , oL) and use T = (τ1, · · · , τL) to denote the

STTI, where τi is the i-th trajectory in the STTI, i = 1, · · · , L. We can see that T is an

image which contains all the touch trajectories in O. In particular, the i-th trajectory

τi in the STTI T is encoded as a structure τi =< {(Xi, Yi)}, ti, CRGB(Ri, Gi, Bi) >,

where {(Xi, Yi)} is the set of coordinate points swiped by the touch action. ti =

ti,1, · · · , ti,N2
is the set of time stamp for elements of {(Xi, Yi)} with N2 representing

the sample times of the touchscreen sensor. Ri, Gi and Bi denote the RGB color

values of τi.

To construct touch trajectories from users in the authentication server of the
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IIoT system, we first use coordinate points {(Xi, Yi)} to fit the equation of touch

trajectories for reproducing the length, shape, and position of the trajectory τi by

executing Algorithm 1. Then we proceed to calculate the average pressure, average

curvature, and average deviation degree when the user touches the screen to denote

the red, green, and blue intensity (i.e., CRGB(Ri, Gi, Bi)) of the trajectory τi.

Ri calculation: The average pressure Ri of the trajectory τi is given by

Ri =
1

N2

N2
∑

j=1

Norm(Fi,ti,j), (4.7)

where N2 is the pressure sample times. Fi,ti,j is the j-th pressure value collected from

the pressure sensor of the MT and Norm(·) is normalization operation.

Gi calculation: We use average curvature of fM2
(xi, a) to denote the green ele-

ment value Gi of RGB color for the trajectory τi, and Gi is given by

Gi =
1

N2

N2
∑

j=1

|f
′′

M2
(Xi,j, a)|

(1 + f
′2
M2

(Xi,j , a))
3

2

. (4.8)

Bi calculation: We use the changes of orientation sensor values of the MT to

denote the deviation degree during the formation of τi. An orientation sensor has

three components Azimuth, Pitch, and Roll. We use ΥAz, ΥPi, and ΥRo to denote

the orientation sensor component values of Azimuth, Pitch, and Roll, respectively.

The values of ΥAz, ΥPi, and ΥRo can be obtained from the mobile device rotation

angle around z-axis, x-axis, and y-axis, respectively. Let ti = {ti,1, · · · , ti,N2
} denote

the time stamp set of τi with ti,j denoting the time when (Xi,j, Yi,j) is generated,

j = 1, · · · , N2. We use βti,j to represent the orientation sensor vector consisting of

the corresponding component values during user routine touch actions. Thus, we

have βti,j = (ΥAz,ti,j ,ΥPi,ti,j ,ΥRo,ti,j ). Let D(ti,j, ti,j+1) denote the deviation degree

of the MT between time ti,j and ti,j+1. D(ti,j, ti,j+1) is given by (4.9). Then, we use
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D(ti,j, ti,j+1) =
√

(ΥAz,ti,j+1
−ΥAz,ti,j)

2 + (ΥPi,ti,j+1
−ΥPi,ti,j)

2 + (ΥRo,ti,j+1
−ΥRo,ti,j )

2.

(4.9)

average deviation degree to characterize the green element value of RGB color in the

trajectory, and we have

Bi =
1

N2 − 1

N2−1
∑

j=1

D(ti,j, ti,j+1). (4.10)

Algorithm 2 STTI construction

Input: Discrete touchscreen sensor values {(CX , CY )}
Output: fM2

(xi, a)
1: for j = 1 to N2 do
2: Xi,ti,j = onTouchEvent.Get(CX).
3: Yi,ti,j = onTouchEvent.Get(CY ).
4: end for
5: Obtain discrete touchscreen sensor values of τi, i.e., {(Xi, Yi)} =

{(Xi,ti,1 , Yi,ti,1), · · · , (Xi,ti,N2
, Yi,ti,N2

)}.
6: Adopt Least Squares Polynomial Fit to obtain the equation fM2

(xi, a) of the touch
trajectory τi in the screen-touch coordinate system:

fM2
(xi, a) =

M2
∑

j=0

ajx
j
i ,

7: where M2 represents the degree of the polynomial and a = (a0, · · · , aM2
).

8: return fM2
(xi, a)

Finally, we construct the STTI from the screen-touch trajectory sequence O =

(o1, · · · , oL) by reproducing each element in T = (τ1, · · · , τL), and the procedure of

STTI construction scheme is summarized in Algorithm 3.

4.4.2.2 SURF-based Feature Extraction

It is noticed that among several image feature descriptor and extraction tech-

niques, SURF algorithm approximates or even outperforms previously proposed schemes

(such as scale invariant feature transform (SIFT), Binary Robust Independent Ele-

mentary Features (BRIEF) and Features from Accelerated Segment Test (FAST))
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Algorithm 3 STTI construction

Input: T = (τ1, · · · , τL)
Output: STTI
1: for i = 1 to L do
2: Obtain the equation fM2

(xi, a) of the touch trajectory τi using Algorithm 2.
3: Calculate CRGB(Ri, Gi, Bi) of the touch trajectory τi according to (4.7), (4.8)

and (4.10).
4: Draw the image of the trajectory τi: Plot(fM2

(xi, a), color = CRGB(Ri, Gi, Bi)).
5: Hold on
6: end for
7: Save the final image contains all trajectories in T , i.e., STTI.
8: return STTI

with respect to repeatability, distinctiveness, and robustness [86], yet is adopted to

extract STTI features for user identity classification in this work. Based on SURF,

the feature extraction procedure for STTI can be summarized as follows.

Step 1: Given a point X = (x, y) and a scale σ for the STTI T , we use H(X, σ)

to denote the Hessian matrix of point X = (x, y) at scale σ, and H(X, σ) is given by

H(X, σ) =







Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)






, (4.11)

where Lxx(X, σ), Lxy(X, σ) and Lyy(X, σ) are the convolution of the Gaussian second

order derivative ∂2g(σ)
∂x2 , ∂2g(σ)

∂xy
and ∂2g(σ)

∂y2
with the STTI T in point X, respectively. No-

tice that values of Lxx(X, σ), Lxy(X, σ) and Lyy(X, σ) can be approximated through

box filters to reduce the computation time. The determinant of the Hessian matrix

for each pixel can be given by det(H) = DxxDyy − (ωDxy)
2, where Dxx, Dxy and Dyy

are the approximation for the second order Gaussian partial derivative in x-direction,

xy-direction and y-direction, respectively, and ω is an empirical constant.

Step 2: We use a non-maximum suppression in a 3 × 3 × 3 neighbourhood to

localize interest points of the STTI T [87]. In particular, we compare each pixel

processed by the Hessian matrix (as demonstrated in Step 1) with all adjacent points

86



in the image domain and the scale domain (adjacent scale space). If the determinant

of Hessian matrix for one pixel point is greater than (or less than) that of all the

other adjacent points, the point is a candidate interest point. We provide in Fig. 4.5

the detected interest points for three STTIs. We can see from Fig. 4.5 that different

users exhibit distinctive corners, blobs, and T-junctions in their STTIs.

Step 3: We select a reproducible orientation based on information from a circu-

lar region around the interest point, and construct a square region aligned to the

selected orientation for extracting the SURF descriptor. Then, the square region is

split up regularly into smaller 4× 4 square sub-regions. Each sub-region has a four-

dimensional descriptor vector v for its underlying intensity structure, and we have

v = (
∑

dx,
∑

dy,
∑

‖dx‖,
∑

‖dy‖), where dx and dy are Haar wavelet response in

the horizontal direction and vertical direction, respectively. Finally, we can obtain a

descriptor vector for all 4× 4 sub-regions of length 64 (i.e., SURF-64).

(a) (b) (c)

Figure 4.5: STTI and corresponding distinctive locations of ‘interest points’ from user
interaction with the mobile terminal screen for the same WI. (a) STTI
and interest points from User 1. (b) STTI and interest points from User
2. (c) STTI and interest points from User 3.

4.4.2.3 User Identity Verification Based on XGBoost

XGBoost is an ensemble learning method, which uses decision trees as base learn-

ers and combines many base learners to make a strong learner. By using the output
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of many base classification models in the final prediction, XGBoost is an ideal blend

of software and hardware optimization techniques to yield prevalent outcomes by

using fewer computing resources in the shortest amount of time. Hence, we adopt

XGBoost algorithm to realize the classification of STTI features by setting objec-

tive=‘multi:softprob’, ‘booster’: ‘gbtree’, and ‘max depth’: 20. In the training phase

of the XGBoost model, we use SN×M to denote the training sample space with N

samples and M labels (i.e., users, each label corresponding to a user). Then, we have

SN×M = {(V (1), L(1)), · · · , (V (N ), L(N ))}, where V (i) and L(i) is the feature vector

set of the STTIs from the i-th user and the label (user ID) of the user, respectively,

V (i) = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
N3
) , i = 1, · · · ,N . S is employed to train the XGBoost model,

and the trained model is stored in the authentication server of the IIoT system. In

the classification phase, for an STTI feature vector V (u) the XGBoost model outputs

a probability vector ϑ, and ϑ is written as

ϑ = (P (L1|V = V (u)), · · · , P (LM|V = V (u))), (4.12)

where P (Li|V = V (u)) is the probability that V (u) belongs to label Li, i = 1, · · · ,M.

Finally, the ϑ is leveraged to determine user identity under a preset threshold in the

IIoT system.

4.4.3 User Authentication Utilizing Both Time-Varying and STTI Fea-

tures of Consecutive Touch Trajectories

For a claimed identity X , let us consider his observation screen-touch trajectory

sequence OX = (oX,1, · · · , oX,L) and its corresponding STTI feature V X . According

to (4.6) and (4.12), our authentication method determines if (X, [OX , V
X ]) belongs
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to class ̟1 or ̟2 by

(X, [OX , V
X ]) ∈























̟1, ω2P (OX|λX) + ω1P (LX |V =

V X) ≥ ϕ,

̟2, otherwise,

(4.13)

where λX represents the HMM of user X and LX is the label of X ; ω1 and ω2 are

two weights satisfying ω1 + ω2 = 1; ϕ is a preset threshold in the IIoT system; ̟1

indicates that the claim is true (a legitimate user) and ̟2 indicates that the claim is

false (an impostor).

4.5 Experiment and Analysis

4.5.1 Data Acquisition and Performance Metric

To investigate the performance of the proposed continuous authentication method

in practical IIoT systems, we collect 18000 screen-touch trajectory sequences with se-

quence lengths from 6 to 17 involving 50 users for both ME and ROE scenarios in

Anhui Youkaipu Electronics Co., Ltd, which is an IIoT-based company that merges

the IoT and cloud computing technologies for intelligent manufacturing. Specifically,

in the ME environment users are required to execute an IIoT production process ac-

cording to a specified WI, i.e., open the manufacturing APP, jump to the production

process control page, call the parameter setting page, check the environmental pa-

rameter page, enter the number of qualified products, confirm the number of defective

products, enter reasons for defective products, submit the form, and jump to the next

process. In the ROE scenario, users are required to perform an IIoT R&D process

according to a specified WI, i.e., open R&D process control APP, new product entry,

product parameter entry, experiment process recording, product quality optimization,

product quality evaluation, data analysis, and experiment report generation. In our
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experiments, we collect these touch-screen trajectories during these WIs to construct

spatial-temporal features of users for determining their identities.

To evaluate the performance of the proposed continuous authentication method,

we first calculate three typical metrics, namely the FAR, FRR and EER [26]. Specifi-

cally, FAR is the ratio between the number of falsely accepted unauthorized users and

the total number of imposters, and FRR is defined as the ratio between the number

of falsely denied legitimate users and the total number of legitimate users. We then

use FAR and FRR together to generate ROC curve to show the tradeoff between FAR

and FRR under preset threshold values, and EER is calculated as the sensitivity of

the classifier where FAR = FRR.

4.5.2 Authentication Performance Analysis
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Figure 4.6: ROC curves of the proposed continuous user authentication framework
for two IIoT scenarios (i.e., ROE and ME) under three cases (case 1:
ω1 = 0, ω2 = 1, i.e., only using time-varying features based on HMM;
case 2: ω1 = 1, ω2 = 0, only using STTI features based on XGBoost; case
3: ω1 = 0.5, ω2 = 0.5, i.e., jointly utilizing spatial-temporal touch-screen
trajectory features based on HMM and XGBoost. (a) ROE scenario of
IIoT. (b) ME scenario of IIoT.

To illustrate the impact of dimensions (i.e., time-varying nature dimension and

spatial variation dimension of sequential screen-touch trajectories) of screen-touch
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trajectory characteristics on the authentication performance, we consider three dif-

ferent combinations of weights (case 1: ω1 = 0, ω2 = 1, i.e., only using time-varying

features based HMM; case 2: ω1 = 1, ω2 = 0, i.e., only using STTI features based

on XGBoost; case 3: ω1 = 0.5, ω2 = 0.5, i.e., jointly utilizing time-varying features

and STTI features based on HMM and XGBoost, respectively), and plot in Fig. 4.6

the corresponding ROC curves based on FAR and FRR. For the sake of clarity, we

consider here the ROE and ME scenarios with touch trajectory sequence length 17

involving 50 users.

It is observed from Fig. 4.6 that under the proposed continuous authentication

framework, authenticating users jointly utilizing spatial-temporal touch-screen tra-

jectory features (case 3) outperforms the others in terms of ROC curves while au-

thenticating users only utilizing the time-varying features (case 1) obtains the worst

authentication performance in two IIoT scenarios. It indicates that utilizing spatial-

temporal screen-touch trajectory features usually leads to a more accurate charac-

terization of user identities. Specifically, in the ROE scenario, authenticating users

integrating spatial-temporal identities has EER of 4%. Also, in the ROE scenario

where users have high screen-touch operation freedom and interference during rou-

tine IIoT work process, the proposed method can still achieve EER of 6%. This

indicates that the continuous user authentication using spatial-temporal screen-touch

trajectory features from consecutive touch trajectories is promising to adapt various

complicated IIoT application scenarios.

4.5.3 Sensitivity to Weights of ω1 and ω2

To explore how weights of two classifier weights ω1 and ω2 (ω1 = 1 − ω2) in

(4.13) would affect the performance of the proposed continuous user authentication

approach, we adopt the screen-touch trajectory length 17 and the number of users

50 in ME and ROE scenarios, and present in Fig. 4.7 the impact of ω1 on EER by
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varying ω1 from 0 to 1 across the two IIoT scenarios. As shown in Fig. 4.7, the

EER when ω1 = 0 (i.e., using only the time-varying features of scree-touch trajectory

sequences) and the EER when ω1 = 1 (i.e., using only the STTI features of the touch

trajectories) are always larger than that when 0 < ω1 < 1 in both ROE and ME

scenarios, and we can obtain the optimal EER values of 3.85% and 5.77% for ME and

ROE scenarios with the settings of ω1 = 0.4 and ω1 = 0.55, respectively. Therefore,

by reasonably adjusting the weights of the two weights (ω1 and ω2) the authentication

performance of the proposed approach can be flexibly controlled to adapt to various

IIoT scenarios. Another observation from Fig 4.7 is that due to more standardized

operation action restrictions on work contents and work flows according to WIs in ME

and thus a high discriminability among users there in terms of the spatial-temporal

information, the EER in the ME scenario is always better than that in the ROE

scenario.
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Figure 4.7: Authentication performance in terms of the usability to weights of two
classifiers (i.e., HMM based classifier and XGBoost classifier).

4.5.4 Usability to Operation Length

We show in Fig. 4.8 the impact of the number of trajectories (i.e., the length

of the successive screen-touch trajectories L used for user authentication) on the au-

thentication performance under the settings of L from 7 to 17. We can see from
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Fig. 4.8 that the EER of the proposed authentication framework monotonously de-

creases as L increases from 7 to 17, but such trend becomes less significant if we

further increase the number of trajectories L. It indicates that when the length of the

trajectory sequence is relatively small, we can get a significant improvement in the

authentication performance in terms of EER by increasing the number of trajectories

L, but a too large number of trajectories might not be cost efficient since using more

screen-touch trajectories in the continuous authentication framework will lead to a

long authentication time without yielding a significant authentication performance

enhancement. Therefore, it is wise to select a suitable number of trajectories for

various IIoT applications with different authentication performance requirements.
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Figure 4.8: The impact of the length of the successive screen-touch trajectories L
used for user authentication on EER.

4.5.5 Scalability to User Space

To evaluate the scalability to user space for the touch based continuous authenti-

cation approach, we present in Fig. 4.9 how EER varies with the user space size by

considering randomly selected 10 ∽ 50 users. The results show that in general EER

increases as the size of the user space increases. Specifically, when the user space size

increases from 10 to 50 the EER increases from 2.06% to 5.98% and 1.46% to 3.95%

in ROE and ME scenarios under L = 17, respectively.
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It shows that the value of EER increase as the size of the user space becomes

larger, especially for small user space. Specifically, there is a significant increase

in the authentication error rate in the interval between 10 and 30 users. This is as

expected, since a larger number of legitimate users usually means a higher probability

that two legitimate users have similar profiles. We also observe that when the user

size is larger than about 30 users, the EERs become relatively stable, and only small

fluctuations with the error range are apparent. These results indicate that the user

size in our analysis should be (at least) larger than 30, in which case the influence

of user space may be minimal. These results also indicate that our subject size is

located in a range where the influence could be negligible.
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Figure 4.9: The scalability to user space for the touch-based continuous authentica-
tion framework.

4.6 Discussion

For IIoT authentication scenarios with high real-time requirement, we propose a

new user authentication framework based on the spatial-temporal features of screen-

touch trajectories for continuous user authentication in practical IIoT scenarios, in

which every time a user touches the screen, the IIoT authentication system can verify

the user’s identity by analyzing the time-varying features of touch trajectory se-

quences and cumulative screen-touch trajectory image characteristics, thus ensuring

94



Figure 4.10: Flame graph of algorithm time consumption (L = 9).

the real-time user authentication. In this work, we draw the STTIs of multiple touch

action trajectories of users at one time, and use SURF algorithm to quickly extract

the identity features of STTIs. Every time a user touches the screen of MTs, we use

the trajectories generated by the current screen-touch action to generate an STTI

together with the previous multiple screen-touch trajectories, and use these STTI

features and the time-varying features of touch trajectory sequences to quickly deter-

mine the legitimacy of the user’s identity. As shown in Fig. 4.10, we present the flame

graph of algorithm time consumption for STTI construction and feature extraction.

We can see from Fig. 4.10 that our proposed authentication protocol can complete

STTI construction and feature extraction in 1.974 seconds when the number of touch

trajectories equals 9. Note that the classifiers for user identity classification are of-

fline trained, and the authentication model can give the classification output within

1 second for a given test sample. This means that our algorithm can give the user’s

identity decision in about 3 seconds, and conduct the identity authentication almost

every 3 seconds.

However, we also note that this algorithm that only relies on touch actions to

perform user identity authentication lacks authentication basis from multiple per-

spectives (multiple modes or actions), so its security is slightly inadequate compared

with the algorithm that uses multiple operations. In the future research work, we

will try to add new features from different modes and operation actions to construct
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the user identity, and improve the robustness and reliability of the algorithm while

ensuring the real-time performance guarantee.

In the process of user screen-touch spatial-temporal feature enrollment, when a

new user joins the authentication system, we require the user to complete specific

screen-touch actions according to concerned certain WIs, thereby completing enroll-

ment and storage of user screen-touch spatial-temporal features. In future work, we

will further research and develop the dynamic registration and update method of user

screen-touch spatial-temporal features to improve the usability of the authentication

framework.

4.7 Summary

For IIoT authentication requirements of high real-time performance in the MC

layer, this paper proposed a novel continuous authentication framework based on

spatial-temporal screen-touch trajectory features. We demonstrated that the new

framework enables a flexible and efficient authentication performance control to be

achieved by adjusting the weights for classifiers, the screen-touch trajectory length,

and the number of user space. Thus, the proposed framework is promising for satisfy-

ing different authentication performance requirements across various IIoT scenarios.

Moreover, it is expected that the new authentication framework with the two proposed

classifiers can serve as a good enhancement and complementary to the traditional au-

thentication solutions for IIoT systems.
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CHAPTER V

Authentication Utilizing Two-Dimensional

Features for the Decision and Optimization (DO)

Layer

5.1 Background and Related Work

The basic functions of the DO layer are decision making, optimization, descrip-

tion, diagnosis, business operations, and operation management. In the DO layer,

the IIoT system encapsulates key technologies, algorithms, operational strategies,

important customer information, financial and business data, manufacturing opti-

mization strategies, and operational management technologies. With the integration

of IIoT, cloud computing and big data, artificial intelligence platforms and intelligent

decision-making systems, etc. are usually integrated in this layer. We can see that

in the DO layer a large amount of confidential information and sensitive data (such

as finance, core technology, core algorithms, operation and sales strategies, crucial

customer information, and key management technical services) are generated, stored

and exchanged. Therefore, the user authentication at this layer usually requires the

authentication protocol to have high security performance.

By now, some research efforts have been devoted to the study of passive user
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authentication with high security performance. In [26], the authors utilize kinematic

information sequences of multi-motion sensor behavior for passive user authentication

when the user interacts with his smartphone, and also propose a decision procedure

based on Hidden Markov Model (HMM) to characterize the behavioral biometric fea-

ture space such that the continuous user identity verification can be implemented

across various operational scenarios. The authors in [52] demonstrate the discrim-

inability and robustness of features related to screen-touching behaviors, and then

apply these features to develop a passive authentication solution for smartphone

users. The authors in [53] show that it is possible to distinguish profiles of users

by exploring CSI information even when they possess similar CSI fingerprints. They

also design a practical user authentication approach based on the fine-grained CSI

features to accurately determine the user identities in both lab and apartment envi-

ronments. The literature [65] exploits the CSI of WiFi signals to extract the gesture

features (like push, swing, and wave) and some identity-related imperceptible fea-

tures, and then applies the HMM and Fresnel Model to develop a robust and efficient

user authentication approach to determine user identities in IoT environments.

5.2 Motivation

It is notable that when applying existing one-dimensional feature-based user pas-

sive authentication approaches in modern IIoT systems, it is usually difficult to ac-

curately depict the user identities and thus to achieve an acceptable user authentica-

tion performance based on only one-dimensional characteristics. First, users in IIoT

systems usually just follow the requirements of industrial production businesses to

conduct some basic operations over their MTs in a standardized manner, making it

difficult to accurately characterize the user identities with only the time-varying be-

havioral biometric features extracted from their operation actions. Second, the IIoT

system shares a relatively uniform electromagnetic and space environment, so users
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there show a strong location correlation and thus a low discriminability in terms of

the CSI spatial variation characteristics [53, 54]. However, our results in this work

indicate that by jointly exploiting the two-dimensional features of the time-varying

characteristics of user sequential operation actions and spatial variation characteris-

tics of CSI caused by these actions, we can not only provide a full spatial-temporal

characterization of user identities but also significantly improve the performance of

passive user authentication.

In this chapter, we develop a novel two-dimensional passive authentication frame-

work by jointly utilizing both the time-varying characteristics of the user sequential

operation actions and spatial variation characteristics of CSI caused by these ac-

tions. In particular, by constructing time-varying operation action sequences from

the routine work process of a user and adopting the HMM to model these sequences,

we develop a new method to characterize the behavioral biometric characteristics

of users in IIoT scenarios. We then propose a new approach to depict the spatial-

temporal variations of CSI related to a user, in which the WiFi CSI data related

to the user is first sliced to reduce the noise and interference from the random ac-

tions of the user, then the multi-domain features from the CSI data are extracted

and the XGBoost model is applied to characterize these features. We further design

two classifiers corresponding to the above two characteristics. By combining these

two classifiers and assigning each classifier an appropriate weight, we thus develop

a novel two-dimensional user authentication framework for passive, continuous and

non-intrusive user authentication in IIoT scenarios. Finally, we conduct extensive ex-

periments to evaluate the performance of the proposed authentication framework in

terms of false acceptance rate, false rejection rate and equal error rate, and also exam-

ine the related authentication efficiency issues such as the sensitivity to the weights

for classifiers, the sensitivity to authentication time and the capability of resisting

against impersonation attacks.
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5.3 Problem Formulation

5.3.1 Network Model

Figure 5.1: Network model for IIoT scenarios.

Consider an IIoT system consisting of multiple legitimate users with various MTs,

a cloud manufacturing platform and a potential attacker, as shown in Fig. 5.1. In

the IIoT system, users holding MTs always interact with the cloud manufacturing

platform by performing some common operation actions (e.g., scanning, inputting,

and sliding screen) on the MTs during industrial production processes. Legitimate

users generally send/receive sensitive information (e.g., control instructions, business

confidential data, and core technologies) to/from the cloud platform through opera-

tion actions on the MTs. The potential attacker may impersonate as legitimate users

to launch a spoof attack by implementing a series of operation actions on the MTs,

and thus hopes to acquire sensitive information (e.g., confidential information) from

the IIoT system.

For a user, its operation action sequence (OAS) is a sequence of successive oper-

ation actions collected from his routine work process. It is noticed that time-varying

OASs from each user can reflect a unique behavioral biometric characteristic of the

user [26]. We provide in Fig. 5.2 the differences of OASs’ time-varying properties
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between User 1 and User 2, containing 60 sequential time points, 2 transaction events

and 4 operation actions (the definition of transaction events and operation actions is

listed in Table 5.1). We can see from Fig. 5.2 that the OAS from a user possesses its

unique time-varying nature, which can be used to describe the user’s identity in the

IIoT scenarios. More importantly, the variations of WiFi CSI caused by operation

(a) (b) (c)

Figure 5.2: Differences of OASs’ time-varying properties from different users. (a)
The operation actions and the transaction events from User 1 change
over time (t). (b) The operation actions and the transaction events from
User 2 change over time (t). (c) The comparison of operation time-varying
properties between User 1 and User 2.

actions from the user present a unique spatial-temporal characteristic due to the path

loss and multi-path effects of the wireless channels [88]. Thus, we attempt to combine

the characteristics of operation actions as well as channel CSI to design a passive user

authentication framework for IIoT scenarios.

5.3.2 Threat Model

In the concerned network model, an attacker has access to physical MTs and can

capture corresponding passcodes (e.g., smart cards, patterns, and fingerprints) to

unlock MTs. Meanwhile, the attacker may be familiar with the business processes

and behavioral habits of the legitimate users, and attempts to access the IIoT system

through MTs by using identities (e.g., passcodes or other proofs) of legitimate users.

As a result, sensitive information involving commercial confidentiality is typically

exposed to the attacker through these MTs. Hence, the goal of our work is to design
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a passive authentication framework for the IIoT system, which discriminates user

identities continuously and non-intrusively through the tiny difference of the user’s

operation actions on MTs.

5.4 Proposed Passive Authentication Framework

In this section, a flexible and cost-effective passive user authentication framework

is developed to determine user identities for the IIoT system, which exploits the

behavioral biometric characteristics and the channel CSI patterns of users’ operation

actions from their routine work processes. As illustrated in Fig. 5.3, the proposed

authentication framework consists of three processes: 1) User identity characterization

based on behavioral biometric features; 2) User identity characterization based on CSI

features; 3) User authentication jointly utilizing two-dimensional features.

5.4.1 User Identity Characterization Based on Behavioral Biometric Fea-

tures

5.4.1.1 Time-varying operation action events

During the routine work process of a user, the user sequential operation actions

with MTs are actually activated by a series of transaction events (such as submit-

ting form, confirming operation, and browsing) encapsulated in the background of

industrial APPs and/or cloud services to complete specific business functions in IIoT

systems. Some common operation actions and transaction events are listed in Table

5.1.

To construct sequential OASs and transaction event sequences during user routine

work processes, we use Φ = {SC, SR, SL, SU, SD, IN,PS} to denote the set of opera-

tion actions and use Ψ = {SF,CO,VB,PR,DO,UP} to denote the set of transaction

events, where the definition of the elements in Φ and Ψ is described in Table 5.1. We
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Figure 5.3: The processes of the proposed two-dimensional passive authentication
framework for IIoT scenarios.

Table 5.1: Common operation actions and transaction events
Transaction

events
Description

Operation

actions
Description

SF submitting form SC scanning Q/R
CO confirming operation SR sliding right
VB viewing and browsing SL sliding left
PR printing SU sliding up
DO downloading SD sliding down
UP uploading IN inputting

PS pressing screen
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use OL = (oL,1, · · · , oL,L) to denote an OSA of length L, and use SL = (sL,1, · · · , sL,L)

to denote the corresponding transaction event sequence of OL, where oL,i ∈ Φ denotes

the i-th operation action in the OL and sL,i ∈ Ψ is the transaction event that activates

the oL,i, i = 1, · · · , L. We further use ti to denote the sampling time of oL,i.

5.4.1.2 User identities modeling based on Hidden Markov Model

As shown in Fig. 5.4, we apply the HMM to characterize behavioral biomet-

ric characteristics of a user during his routine work processes. The state transition

between operation actions in OL can be observed directly, and a probabilistic func-

tion of the actual (hidden) states in SL activates the observed states. Therefore, the

transaction event sequence OL is regarded as the observation state sequence, and the

transaction event sequence SL represents the hidden state sequence. Here, we use

Figure 5.4: Observation states and hidden states of the HMM model.

λ = (A,B, π) to denote the discrete HMM model in our framework with the param-

eters of the state transition probability matrix A, the observation probability matrix

(obfuscation matrix) B and the vector of initial state probability π, as shown in Fig.

5.4. Applying λ, the process of operation action verification can be regarded as a

probability evaluation of generating the observation sequence O under λ, based on

three probability parameters of λ described as follows.
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a) The state transition probability matrix A is written as

A = [aij ]N×N , (5.1)

where aij is the adjacency occurrence from transaction event (hidden state) SL,i at

time t to the transaction event (hidden state) SL,j at time t+1, and aij is written as

aij = P (SL,j = ∅j|SL,i = ∅i), i = 1, . . . , N ; j = 1, . . . , N, (5.2)

where N is the number of elements in Ψ, ∅i and ∅j are the i-th and the j-th element

in Ψ respectively.

b) The observation probability matrix B is denoted by

B = [bj(k)]N×M , (5.3)

where bj(k) is the probability of generating the operation action (observation state)

ζk when the transaction event (hidden state) is ∅j, and bj(k) is given by

bj(k) = P (OL,k = ζk|SL,j = ∅j), k = 1, . . . ,M ; j = 1, . . . , N, (5.4)

where M is the number of elements in Φ, ζk is the k-th operation action in Φ.

c) The vector of initial state probability denoted by π is given by π = (πi), where

πi is the probability of being in state ∅i at time t = 0 (initial time), and πi is written

as

πi = P (i1 = qi), i = 1, 2 . . . , N. (5.5)
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5.4.1.3 The multi-class classifier design based on HMM

According to [89–91], the authentication process for a user is regarded as a binary

classification problem. Specifically, based on (5.1) ∽ (5.5), the HMM model of the

i-th user to be authenticated is given by λi = (Ai, Bi, πi). Given the observed OAS

OL from the user, the probability P (OL|λi) is calculated to authenticate the user’s

identity under a given threshold. Suppose the number of users in the IIoT system

is N , we first develop N binary classifiers based on HMM for each legitimate user.

Then, based on theN binary classifiers, we obtain a one-versus-all multi-class classifier

denoted by RBio to determine user identities by using behavioral biometric features

of users.

5.4.2 User Identity Characterization Based on CSI Features

According to [53, 54], the operation actions performed by a user present a unique

spatial-temporal characteristic due to the path loss and multi-path effects of the

wireless channels [88]. Hence, we characterize identities of users by exploiting the

statistic-, frequency- and wavelet-domain features of channel CSI signals, and perform

user authentication utilizing a well-known XGBoost algorithm based on the fine-

grained CSI characteristics [92].

5.4.2.1 Raw CSI data collection

For various IIoT application scenarios, we leverage the CSI data corresponding

to user operation actions to extract the unique spatial variation characteristics of

CSI caused by these operation actions. In this work, the CSI data is collected from

the Anhui Youkaipu Electronics Co., Ltd, an IIoT-based company that merges the

IoT and cloud computing technologies for intelligent manufacturing. We provide the

space layout of environments used for collecting raw CSI data in Fig. 5.5, where

the location layout of rooms, equipments, walls, and interference sources are from
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parts of real manufacturing environments (ROE and ME) of the company. In the

IIoT application scenario, we utilize a public CSI tool [93] to record the WiFi data

packets transmitted from a dual antenna commercial access point (namely TP-LINK-

TL-CPE300D access point) to a desktop computer equipped with 3-antenna wireless

network card (Intel 5300 NIC).

Figure 5.5: The layout of the rooms used to collect data in the IIoT system. (a) ME
scenario. (b) ROE scenario.

5.4.2.2 CSI signal slicing

In this work, we use the CSI data corresponding to user routine operation ac-

tions to extract the unique spatial variation characteristics of user action behavior.

In principle, we should use all CSI data generated during a user’s work processes in

the extraction of CSI features to obtain a better authentication performance. How-

ever, the CSI data outside of the operation action periods is commonly generated by

random actions from the user, so it does not contain useful information of operation

action features. Also, including such CSI data in the characterization of user identity
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yields high computational complexity and random action interference without much

real benefit in terms of authentication performance. To improve the authentication

effectiveness and practicability of the proposed authentication framework, we perform

CSI signal slicing shown in Fig. 5.6 and use a time offset before and after the time

duration of an operation action to ensure that the CSI signal of our slice comes from

the full cycle of user action.

(a) (b)

Figure 5.6: CSI signal slicing. (a) Intercepting the CSI signals of each operation
action during the time Tdur+2×Tadd. (b) Slicing the CSI signals according
to the time when the operation actions occur.

As shown in Fig. 5.6(a) that for the operation action oL,i in OL, we use Tduri to

denote its time duration and use Taddi
to denote a time offset before and after the

time duration Tduri . As shown in Fig. 5.6(b) that we use CL,i to denote the CSI

data slice during the time Tduri + 2× Taddi
, so the CSI slice sequence CL of OAS OL

is determined as CL = (CL,1, · · · , CL,L). Finally, we use CL to extract the spatial

variation characteristics of CSI caused by user OAS OL.

5.4.2.3 CSI feature extraction

To obtain fine-grained characteristics of CSI for each subcarrier to accurately

depict user identities utilizing the channel CSI data, we extract three-domain features

from CSI data CL including 39 attributes. They are time domain features (ID: 1 ∽
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Figure 5.7: Three-domain CSI features extracted from CL and corresponding feature
importance.

17), frequency domain features (ID: 18 ∽ 21), and wavelet domain features (ID:

22 ∽ 39), as shown in Fig. 5.7. Specifically, the time domain features (ID: 1 ∽ 17)

are self-explanatory. For frequency domain features (ID: 18 ∽ 21), we use FMF to

represent the mean of frequency f through FFT transform of CSI signal CL. Let FFC,

FRMSF and FRVF denote the barycenter frequency, root mean square frequency and

variance frequency, respectively. For a given frequency f , its frequency amplitude

s(f) can be obtained through FFT transform of CSI signal CL, and its FFC, FRMSF

and FRVF can be written as

FFC =

∑

fs(f)
∑

s(f)
, (5.6)

FRMSF =

√

∑

f 2s(f)
∑

s(f)
, (5.7)

FRVF =

√

(f − FFC)2s(f)
∑

s(f)
. (5.8)
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To obtain the wavelet domain characteristics of CSI signals, we first perform three-

layer wavelet packet decomposition on CL to gain the wavelet packet tree denoted by

τ . Then, we reconstruct the wavelet packets including 8 nodes in the third layer of τ ,

and obtain the wavelet packet coefficients of the 8 nodes represented by {ℵ1, . . . ,ℵ8}.

We use Υi to denote the energy of ℵi, i = 1, · · · , 8, and we have Υi = Norm(ℵi), where

Norm(·) represents 2 norm calculation. The total energy of the 8 nodes denoted by

Etotal and the proportion of energy of the i-th node denoted by E(i) are written as

Etotal =
8

∑

i=1

Υi, (5.9)

E(i) = Υi/Etotal, i = 1, 2, . . . , 8, (5.10)

respectively. We can see that {E(i)} (i = 1, 2, . . . , 8) are the features corresponding

to ID 22 ∽ 29 in Fig. 5.7. The wavelet energy spectrum entropy for each node in the

third layer of τ demoted by HPE is calculated as

HPE = −
8

∑

i=1

E(i) ln(E(i)), i = 1, 2, . . . , 8. (5.11)

We use HWSE to denote wavelet Shannon entropy of 8 nodes in the third layer of τ ,

and HWSE is given by

HWSE(i) = −
N
∑

i=1

ℵ2
i ln(ℵ

2
i ), (5.12)

where i is the node in the third layer of τ , i = 1, 2, . . . , 8 and N is the length of ℵi. We

can see that {HWSE(i)} (i = 1, 2, . . . , 8) are the features corresponding to ID 31 ∽ 38

in Fig. 5.7. Let HSE denote wavelet singular entropy, and HSE can be calculated as

HSE = −
m
∑

i=1

r(i)
m
∑

i=1

r(i)
ln









r(i)
m
∑

i=1

r(i)









, (5.13)
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where r(i) is the i-th singular value generated by the singular value decomposition

[94] of τ and m is the number of singular values in {r(i)}.

5.4.2.4 The multi-class classifier based on XGBoost model

To solve multi-class classification problem for user authentication, we first con-

struct feature datasets for each legitimate user by using the fine-grained three-domain

CSI features. Supposing the number of users in the IIoT system is N , we then develop

N binary classifiers based on XGBoost for each legitimate user. Finally, based on the

N binary classifiers, we obtain a one-versus-all multi-class classifier denoted by RCSI

to determine user identities by using CSI features of users.

5.4.3 User Authentication Jointly Utilizing Two-Dimensional Features

The process of user authentication for the IIoT system can be regarded as a user

identity verification process based on the two designed classifiers: RBio and RCSI. To

construct the sample space for training RBio and RCSI, we use SN×M to denote the

training sample space with N samples and M labels (users), use S
+
Labm

to denote all

the samples with label Labm (m ∈ [1,M ]) in SN×M , and use S−
Labm

to denote samples

with labels except Labm. Then we can obtain M sub-sample sets denoted by Ssub,

Ssub =

















S
+
Lab1

S
−
Lab1






,







S
+
Lab2

S
−
Lab2






, . . . ,







S
+
Labm

S
−
Labm

















, (5.14)

where m ∈ [1,M ], ”+” and ”-” denote the positive sample label and the negative

sample label, respectively.

5.4.3.1 Training of RBio

For the m-th user with sub-sample set S(sub,labm) defined in (5.14) and m =

1, 2, . . . ,M , the HMM model for the user is given by λ = (A,B, π). Given an OAS
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OL from the user, we attempt to train the HMM model for tuning the parameters of

λ (namely the state transition matrix A, the observation matrix B, and the initial

state distribution π), so that the model is maximally like the observed sequences OL.

Under λ and OL, we use γt(i) to denote the probability that the state is ∅i at time

t, and γt(i) is given by

γt(i) = P (SL,t = ∅i|OL, λ) =
P (SL,t = ∅i, OL|λ)

P (OL|λ)
. (5.15)

Let αt(i) and βt(i) denote the forward probability and backward probability [84] when

the state is ∅i at time t, and then we have

αt(i) = P (OL,1, OL,2, . . . , OL,t, SL,t = ∅i|λ), (5.16)

βt(i) = P (OL,t+1, OL,t+2, . . . , OL,L|SL,t = ∅i, λ). (5.17)

By combining (5.16), (5.17) and (5.15), γt(i) can be re-written as

γt(i) =
αt(i)βt(i)

P (λ|O)
=

αt(i)βt(i)
L
∑

i=1

αt(j)βt(j)

. (5.18)

We user ξ(i, j) to denote the probability that the state is ∅i at time t and the next

state is ∅j at time t + 1 under λ and OL, and ξ(i, j) is given by

ξ(i, j) =
P (SL,t = ∅i, SL,t+1 = ∅j , OL|λ)

P (OL|λ)

=
P (SL,t = ∅i, SL,t+1 = ∅j, OL|λ)

L
∑

i=1

L
∑

i=1

P (SL,t = ∅i, SL,t+1 = ∅j, OL|λ)

. (5.19)

According to Baum-Welch algorithm [95, 96], the training process of λ under
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observation sequence OL can be described as follow.

a) For n=0, the initial parameter values of the model λ are A(0) = a
(0)
ij , B

(0) =

bj(k)
(0) and π(0) = π

(0)
i . Thus, the initial model denoted by λ(0) is given by

λ(0) = (A(0), B(0), π(0)). (5.20)

b) For n = 1, 2, . . . , L, we perform iterations

A(n+1) = a
(n+1)
ij =

L−1
∑

t=1

ξt(i, j)

L−1
∑

t=1

γt(i)

, (5.21)

B(n+1) = bj(k)
(n+1) =

∑

t=1,OL,t=ζk

γt(j)

L
∑

t=1

γt(j)

, (5.22)

π(n+1) = γ1(i), (5.23)

where γt(i) and ξt(i, j) can be calculated according to (5.18) and (5.19).

c) Finally, we obtain parameters A, B, and π of λ after all iterations are completed,

and the training process is terminated.

By repeating the above training processes of HMM model for each user, we obtain

M trained sub-classifiers in our RBio classifier. Then we can determine user identities

based on the output of the classifier RBio.

5.4.3.2 Training of RCSI

For a given sub-sample set S(sub,labm) defined in (5.14) with N samples, the train-

ing samples for the XGBoost model can be denoted by {(xi, yi)}, i = 1, 2, . . . , N ,

(xi, yi) ∈ S(sub,labm). We can see that xi and yi represent the vector of CSI features

and corresponding label of the i-th sample in S(sub,labm), respectively. Let ŷi denote

a tree ensemble model which uses K additive functions to predict the output corre-
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sponding to xi, and then we have

ŷi = φ(xi) =

K
∑

i=1

fk(xi), fk ∈ ̥, (5.24)

where ̥ = {f(x) = υϑ(x)} denotes the space of classification and regression tree

(CART) [92, 97], ϑ is the structure of each regression tree that maps a training

sample to the corresponding leaf index, fk represents the input-output functional

relationship of the k-th regression tree, each fk corresponds to an independent tree

structure ϑ and leaf weights υ. We use υi to represent score on the i-th leaf of the

regression tree in ϑ.

To obtain fk through the training of XGBoost model, we first define an objective

function with regularization term L(φ) as

L(φ) =
∑

l(yi, ŷi) +
∑

Ω(fk), (5.25)

where

Ω(f) = γT +
1

2
χ‖υ‖2, (5.26)

l is a differentiable convex function which represents the difference between the pre-

dicted value ŷi and the actual value yi, T is the number of leaves in the tree, Ω(fk)

is the penalty term of the complexity for each fk to prevent the over fitting and also

control the total number of leaf nodes.

According to boosting algorithm, we iterate Equation (5.24) as
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Iteration 0 : ŷ
(0)
i = 0, (5.27a)

Iteration 1 : ŷ
(1)
i = f1(xi), (5.27b)

Iteration 2 : ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi), (5.27c)

...

Iteration t : ŷ
(t)
i =

t
∑

i=1

fk(xi) = ŷ
(t−1)
i + ft(xi). (5.27d)

By combining (5.27d) and (5.25), the objective function in (5.25) at the t-th iteration

can be written as

L(t) =
n

∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft). (5.28)

Here, the second-order approximation is employed to quickly optimize the objective

function by greedily adding the ft according to (5.25) [98], and L(t) is approximately

calculated as

L(t)
≈

n
∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft), (5.29)

where

gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)), (5.30a)

hi = ∂2ŷ(t−1)l(yi, ŷ
(t−1)). (5.30b)

Since the value of ŷ
(t−1)
i has been calculated at iteration t − 1, l(y

(t)
i , ŷ

(t−1)
i ) is a

known constant term. After removing the constant term, the objective function of

the t-th iteration is given by
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L(t)
≈

n
∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
χ‖υ‖2

=
n

∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
χ

T
∑

i=1

υ2j

=
T
∑

i=1







1

2
(
∑

i∈Ij

hi + χ)






υj +

∑

i∈Ij

gi

∑

i∈Ij

hi + χ







2

−

(
∑

i∈Ij

gi)
2

2(
∑

i∈Ij

hi + χ)






+ γT, (5.31)

where Ij = i|ϑ(xi = j) represents the sample data sets assigned to the leaf node j,

υi = f(xi). For a fixed structure ϑ(x), we can calculate the optimal weight υ∗j of leaf

j as

υ∗j = −

∑

i∈Ij

gi

∑

i∈Ij

hi + χ
. (5.32)

Let L̃(t)(ϑ) denote the optimal value of objective function L(t) under υj = υ∗j , and

L̃(t)(ϑ) is given by

L̃(t)(ϑ) = −
1

2

T
∑

i=1

(
∑

i∈Ij

gi)
2

∑

i∈Ij

hi + χ
+ γT. (5.33)

Equation (5.33) can be regarded as a scoring function to evaluate the quality of a

tree structure ϑ for obtaining possible optimal tree structures.

In our XGBoost model, Equation (5.32) gives the optimal weight υ∗j of arbitrary

leaf j during the iteration processes. When all the iterations are completed, the
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structure of decision tree is determined and the training process for the XGBoost

is finished. By summing the output value υj of all decision trees corresponding to a

sample according to Equation (5.24), we can obtain the final label (one label indicates

a class in our classifier) for the sample. To evaluate the contribution of each feature

to the XGBoost model, we also provide in Fig. 5.7 the total number of times that

a feature is used to split the training samples across all trees to show the feature

importance of 39 CSI features in the XGBoost training process.

5.4.3.3 User authentication jointly utilizing two-dimensional identities

Figure 5.8: Passive user authentication utilizing two-dimensional features.

As shown in Fig. 5.8, the decision process for user authentication is as follow-

ing. Given the two-dimensional features [FBio, FCSI] from a user (i.e., the behavioral

biometric features FBio and CSI features FCSI from the same OAS of the user) and

a claimed identity I, our authentication framework applies the ensemble classifier H

designed based on the two classifiers RCSI and RBio to determine if (I, [FBio, FCSI])

belongs to class ̟1 or ̟2 by using

H(I, [FBio, FCSI]) ∈























̟1, w1PC(RCSI(FCSI))

+w2PB(RBio(FBio)) ≥ θ,

̟2, otherwise,

(5.34)

where θ is a predefined threshold in the IIoT system; PC(·) and PB(·) are output
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results of classifiers RCSI and RBio, respectively; ̟1 indicates that the claim is true

(a legitimate user) and ̟2 indicates that the claim is false (an impostor); w1 and w2

are two weights satisfying w1 + w2 = 1.

5.4.4 Security Analysis

Notice that the user authentication jointly utilizing two-dimensional features in

(5.34) can be regarded as an ensemble learning strategy based on the voting technol-

ogy and multiple base classifiers [99–101], where the vote of each base classifier has

its own assigned weight (i.e., w1 and w2). Suppose we adopt an ensemble classifier H

with total n base classifiers h1, · · · , hn. Let hi(F ) be the output label of base classifier

hi under features F (e.g., behavioral biometric features) and let LabF be the real label

of F , where i = 1, 2, · · · , n, hi(F ),LabF ∈ {̟1, ̟2}. If the classification error rate

P (hi(F ) 6= LabF) of base classifier hi is ǫ, we have

P (hi(F ) 6= LabF) = ǫ. (5.35)

Since the ensemble learning strategy combines all base classifiers by voting, the

ensemble learning will make a correct classification if more than half of the base

classifiers are correct. We use H(F ) to denote the output label of the ensemble

classifier H under feature F , then H(F ) is given by

H(F )



































= LabF, more than half of the base

classifiers are correct,

6= LabF, otherwise.

(5.36)

Notice that the classification accuracy of each base classifier should not do worse than

that of random guessing, we have ǫ < 0.5 (i.e., the classification error rate of each

base classifier is less than 0.5). Thus, according to the Hoeffding inequality [102–104]
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the error rate of the ensemble classifier H is determined as

P (H(F ) 6= LabF) =

⌊n/2⌋
∑

k=0







n

k






(1− ǫ)kǫn−k

6 exp

(

−
1

2
n(1− 2ǫ)2

)

.

(5.37)

We can see from (5.37) that as the number of base classifiers n increases, the error

rate decreases exponentially. Therefore, by integrating two classifiers (e.g., RCSI and

RBio) corresponding two independent characteristics (e.g., time-varying behavioral

biometric characteristics and spatial variation characteristics of CSI) and assigning

each classifier an appropriate weight, the proposed user authentication approach can

lead to a significantly improved authentication performance than that of using only

single classifier. In other words, the proposed two-dimensional user authentication

approach can be used to obtain a more superior security performance for satisfying

different authentication requirements across various IIoT scenarios.

5.5 Experiment and Analysis
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5.5.1 Experiment Settings

We perform our experiments in Anhui Youkaipu Electronics Co., Ltd, an IIoT-

based company that merges the IoT and cloud computing technologies for intelligent

manufacturing. In the proposed passive user authentication, an OpenStack private

cloud platform is adopted to provide storage, computing and authentication service

encapsulation for feature extraction, classifier construction, training and user identity

decision.

We consider two practical manufacturing environments (i.e., ROE and ME) with

the space layouts shown in Fig. 5.5. In each environment, we collect user operation

actions (i.e., the operation actions listed in Table 5.1) and raw CSI data caused

by these actions during user routine work processes, and transfer these data to the

OpenStack cloud platform through the API provided by OpenStack. The two datasets

obtained are shown in Table 5.2. Specifically, based on the HBuilderX development

environment running in the background of Android mobile terminals, we develop an

APP to obtain operation actions of users and utilize the public CSI tool in [93] to

record the CSI data caused by these actions. As shown in Fig. 5.5, the TP-LINK

access point and the Intel 5300 NIC wireless network card are used for recording

the CSI data. The operation actions and CSI data are transferred in real time to a

virtual machine, which is running the Windows Server 2008 R2 operation system of

the OpenStack private cloud platform. In the virtual machine, we adopt the Microsoft

SQL Server 2008 R2 database to store the data, and employ the Matlab R2019a and

Microsoft Visual C++ to implement the proposed passive user authentication.

5.5.2 Data Acquisition and Performance Metrics

1) Data acquisition

To investigate the performance of the proposed authentication approach in prac-

tical IIoT scenarios, we provide in Table 5.2 the main experiment data collected from
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user routine operation actions. We can see from the dataset ♯1 in Table 5.2 that

for each scenario (ROE or ME) and the action sequence length of 9, we collect 400

sequences of operation actions and corresponding physical CSI from 45 users (volun-

teers).

To explore the performance of the new authentication approach in resisting the

impersonation attacks [105], in dataset ♯2 the 18 users under the ME scenario are

evenly divided into two groups A and B to construct 4 sub-datasets denoted by

℘1, ℘2, ℘3 and ℘4. The sub-datasets ℘1 and ℘2 are constructed by collecting the

operation actions and corresponding raw CSI data during routine work processes of

users in group A and group B, respectively. To construct sub-datasets ℘3 and ℘4, we

first conduct the one-to-one randomly pairing between users in group A and group B,

then construct the sub-dataset ℘3 (resp. ℘4) by collecting the operation actions and

corresponding raw CSI data generated by each user in group A (resp. group B) who

impersonates the operation actions of his corresponding pair in the group B (resp.

group A). Under each action sequence length in the range of [6,14], we collect 20

sequences of operation actions and corresponding physical CSI data for each user of a

sub-dataset, so we finally obtain one normal dataset {℘1, ℘2} (without impersonation

attack) and two impersonation attack datasets {℘3, ℘2} and {℘4, ℘1}.

2) Performance metrics

To evaluate the performance of the proposed passive authentication framework,

we first calculate three typical metrics, namely the FAR, FRR and EER [26]. Specif-

ically, FAR is the ratio between the number of falsely accepted unauthorized users

and the total number of imposters, and FRR is defined as the ratio between the

number of falsely denied legitimate users and the total number of legitimate users.

We then use FAR and FRR together to generate ROC curve to show the tradeoff

between FAR and FRR under predefined threshold values, and EER is calculated

as the sensitivity of the classifier where FAR = FRR. We also adopt the authenti-
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cation accuracy to evaluate the performance for resisting the impersonation attacks

of the proposed framework, here the authentication accuracy is defined as the prob-

ability that the system successfully distinguishes between the legitimate users and

impersonation attacks [45, 65].

5.5.3 Authentication Performance Analysis
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Figure 5.9: ROC curves of the proposed authentication approach for two IIoT sce-
narios (i.e., ROE and ME) under three cases (case 1: ω1 = 0, ω2 = 1, i.e.,
only using behavioral biometric features based on RBio; case 2: ω1 = 1,
ω2 = 0, only using channel CSI features based on RCSI; case 3: ω1 = 0.5,
ω2 = 0.5, i.e., jointly utilizing behavioral biometric and channel CSI fea-
tures based on RBio and RCSI), respectively. (a) ROE scenario. (b) ME
scenario.

To demonstrate the performance of the proposed authentication approach in both

ROE and ME scenarios, we adopt the data of sequence length 9 in dataset ♯1 (Table

5.2) and show in Fig. 5.9 the corresponding ROC curves under three cases (each

representing an authentication approach): (case 1: ω1 = 0, ω2 = 1, i.e., using only

the behavioral biometric features based on RBio; case 2: ω1 = 1, ω2 = 0, i.e., using

only the channel CSI features based on RCSI; case 3: ω1 = 0.5, ω2 = 0.5, i.e.,

jointly utilizing both the behavioral biometric features and channel features based on

classifiers RBio and RCSI).
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It is observed from Fig. 5.9 that in both ROE and ME scenarios the proposed au-

thentication approach (case 3) outperforms the others in terms of ROC curves while

the approach utilizing only the physical CSI features (case 2) obtains the worst au-

thentication performance. Thus, the proposed combination approach jointly utilizing

the two-dimensional features can lead to a more accurate characterization of user

identities.

Another observation from Fig. 5.9 is that with the setting of sequence length 9,

the corresponding EER values of three cases are all under 9.5% and 16% in ROE

and ME scenarios, respectively. This demonstrates that when a large sequence length

of operation action is adopted, the authentication with even one-dimensional feature

might be enough to effectively discriminate user identities in IIoT scenarios.

Remark 1 We can see from Fig. 5.9 that by assigning weight ω1 = 1 (resp. ω2 = 1),

the proposed passive authentication framework reduces to the authentication with one-

dimensional feature FCSI (resp. FBio).

5.5.4 Sensitivity to Weights of RCSI and RBio
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Figure 5.10: EER vs. weight ω1 of classifier RCSI (and thus weight ω2=1-ω1 of clas-
sifier RBio).

To explore how the weights ω1 and ω2 of the two classifiers RCSI and RBio would

affect the performance of the proposed authentication approach, we adopt the dataset
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♯1 in Table 5.2 and present in Fig. 5.10 the impact of ω1 (i.e., the weight of the

classifier RCSI) on EER by varying ω1 from 0 to 1 across the two IIoT scenarios. As

shown in Fig. 5.10, the EER when ω1 = 0 (i.e., using only the behavioral biometric

features) and the EER when ω1 = 1 (i.e., using only the channel CSI features) are

always larger than that when 0 < ω1 < 1 in both ROE and ME scenarios, and we can

obtain the optimal EER values of 4% and 7.5% for ROE and ME scenarios with the

settings of ω1 = 0.55 and ω1 = 0.45, respectively. Therefore, by reasonably adjusting

the weights of the two classifiers (RCSI and RBio) the authentication performance of

the proposed approach can be flexibly controlled to adapt to various IIoT scenarios.

Another observation from Fig. 5.10 is that due to the more uniform electromagnetic

and space environment in ME and thus a low discriminability among users there in

terms of the CSI spatial variation, the EER in the ROE scenario is always better

than that in the ME scenario.

5.5.5 Performance of Resisting Impersonation Attacks
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(a) Case 1: ω1 = 0, ω2 = 1
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(b) Case 2: ω1 = 1, ω2 = 0
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(c) Case 3: ω1 = 0.5, ω2 = 0.5

Figure 5.11: Performance of resisting impersonation attacks for the ME scenarios
under three cases. (a) Case 1: ω1 = 0, ω2 = 1. (b) Case 2: ω1 = 1,
ω2 = 0. (c) Case 3: ω1 = 0.5, ω2 = 0.5.

To show the performance of resisting impersonation attacks for the proposed au-

thentication approach, we present in Fig. 5.11 the impacts of weights of the two

classifiers RCSI and RBio on authentication accuracy based on 3 datasets (i.e., {℘1,

℘2}, {℘3, ℘2} and {℘4, ℘1}) of dataset ♯2 in Table 5.2 by considering three different
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combinations of weights (case 1: ω1 = 0, ω2 = 1, i.e., only using behavioral bio-

metric features based on the classifier RBio; case 2: ω1 = 1, ω2 = 0, i.e., only using

channel CSI features based on the classifier RCSI; case 3: ω1 = 0.5, ω2 = 0.5, i.e.,

jointly utilizing behavioral biometric features and channel features based on classi-

fiers RCSI and RBio, respectively). We can see from Fig. 5.11 that the performance

of resisting impersonation attacks for case 3 significantly outperforms that of other

cases in both the impersonation attack datasets (i.e, {℘3, ℘2} and {℘4, ℘1}) and

the common dataset (i.e, {℘1, ℘2}). This indicates that user authentication jointly

utilizing two-dimensional features can effectively resist impersonation attacks in the

ME scenario, and the proposed passive authentication approach is promising to adapt

various complicated IIoT application environments.

Another observation from the Fig. 5.11 is that for the IIoT scenario concerned, the

authentication accuracy of all the 3 cases based on 3 datasets monotonously increases

as the length of OASs increases from 6 to 14, but such trend becomes less significant if

we increase the length of OASs further. It indicates that increasing the length of OASs

can effectively improve the accuracy of the proposed user authentication approach,

so as to better resist impersonation attacks in the IIoT scenario. Meanwhile, we

can see from the Fig. 5.11 that when the length of OASs is relatively small, we

can obtain a significant improvement in the authentication performance in terms of

accuracy by increasing the length of OASs, but a too large sequence length might not

be cost efficient since using more operation actions for user authentication will lead to

a long authentication time without yielding a significant authentication performance

enhancement. Therefore, it is wise to select a suitable OAS length for various IIoT

applications with different authentication performance requirements.
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Figure 5.12: Authentication window sliding and operation action selection.

5.5.6 Sensitivity to Authentication Time

The authentication time of our authentication framework is defined as the time

required for the overall authentication process, including operation action collection,

operation action processing (i.e., operation action construction and CSI feature ex-

traction), and classifier decision process. We use lop to denote the length of the

sequential operation actions and use t̄op to denote the average time cost for collect-

ing an operation action. Since we collect the user’s operation actions one by one

through the interface of MTs, the time consumption tcol used for the operation ac-

tion collecting process is given by tcol = lop × t̄op. Regarding the time consumption

tpro in the operation action construction and CSI feature extraction, we can see from

Section 5.4 that the operation action collection and operation action processing can

be carried out parallelly, so we use tove to denote the overlap time between tcol and

tpro. Since the classifier training can be implemented offline, we ignore the time cost

of classifier training here and use tder to represent the classifier decision time. Thus,

the authentication time ttotal of our proposed authentication framework is determined

as ttotal = tcol + tpro + tder + tnet − tove, where tnet denotes the time consumption of

network transmission.

Our experiment results based on dataset ♯1 indicate that the average authenti-
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cation time of the proposed approach ttotal is no more than 12 seconds when the

length of the sequential operation actions lop is no more than 9, so we can authen-

ticate the identity of a user every 12s in the background of the IIoT system during

user’s routine work process when lop ≤ 9. Note that the proposed passive user au-

thentication approach performs user authentication in a continuous and non-intrusive

manner, so confirming the user’s identity at the frequency of every 12 seconds should

be acceptable to secure for the secure operation of IIoT systems.

Notice that the time consumption used for the operation action collecting process

(i.e., tcol) usually exceeds 60% of the total time consumption, to meet the real-time

user authentication requirements for some critical IIoT applications, we design here

an authentication window sliding mechanism to further reduce the time for operation

action collection and thus the overall authentication time of the proposed approach.

As shown in Fig. 5.12 we first define an authentication window with width lw equaling

to the length of operation actions used for user authentication. Let Lfs be the steps

(i.e., the number of operation actions) that the window slides backward after com-

pleting current authentication, we then use the operation actions in the windows to

perform the next user authentication. Extensive experiment results based on dataset

♯1 show that the average authentication time using the authentication window sliding

mechanism is no more than 5.5 seconds under lw =9 and Lfs =2, which can satisfy the

requirements of the real-time user authentication in some critical IIoT applications.

5.5.7 Comparison of Existing and Our Proposed Approaches
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The comparison between existing and our proposed approaches is shown in Table

5.3. We can see from the Table 5.3 that compared with the existing methods in

[26, 45, 52, 53, 65, 105, 106], the EER of the two IIoT scenarios (ROE and ME) for

our approach is below 8% and the authentication time is within 12s under lop ≤ 9.

This indicates that the proposed approach is promising for various complicated IIoT

application scenarios. Particularly, in the ROE scenario the authentication perfor-

mance (i.e., EER) of the proposed approach outperforms that of existing methods

even in industrial production environments, while in the ME scenarios the authen-

tication performance of our approach is slightly close to that of existing methods.

Moreover, we also can see from Table 5.3 that compared with the existing methods,

the performance of resisting impersonation attacks in terms of accuracy of the pro-

posed approach is above 96% (under lop=9) in the ME scenario. This indicates that

the proposed approach is promising in countering impersonation attacks for various

complicated IIoT application scenarios.

This is due to the following reasons. First, by modeling sequential operation ac-

tions from the routine work process of a user as a Markov process and applying the

HMM model to characterize behavioral biometric features of the user, the proposed

passive authentication framework can nicely depict the time-varying nature and dy-

namic properties of sequential operation actions from the user in challenging IIoT

scenarios. Second, by slicing the CSI signals to reduce the noise and interference

generated by the user’s random actions and modeling the CSI profile of operation

actions from the user based on XGBoost with superior performance, the proposed

passive authentication framework achieves an accurate characterization of the user’s

channel CSI identity. Third, the proposed authentication framework jointly utilizes

behavioral biometric characteristics and channel CSI characteristics to depict user

identities, where the weight of classifiers RCSI and RBio can be adjusted adaptively,

and thus can determine user identities stably and accurately in complicated IIoT ap-
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plication environments. As a result, the proposed passive user authentication frame-

work can be applied to most IIoT scenarios with a promising performance guarantee.

Remark 2 The results in Table 5.3 indicate that in comparison with the authentica-

tion based on one-dimensional characteristics, our proposed authentication approaches

based on two-dimensional characteristics will not bring significantly higher compu-

tational complexity and are applicable to various IIoT scenarios with a promising

authentication performance guarantee.

5.6 Discussion

It is noticed that time-varying OASs from each user can reflect a unique behavioral

biometric characteristic of the user [26]. We provide in Fig. 5.2 that the differences

of OASs’ time-varying properties between User 1 and User 2. More importantly, the

variations of WiFi CSI caused by OAS from the user present a unique spatial-temporal

characteristic due to the path loss and multi-path effects of the wireless channels [88].

Thus, by jointly exploiting the two-dimensional features of user sequential opera-

tion actions, we can not only provide a full spatial-temporal characterization of user

identities but also significantly improve the security of the proposed passive user.

Note that using both the time-varying and CSI features of OAS can accurately

characterize user identities. More importantly, it is very difficult for an attacker to

imitate both the time-varying and CSI features of user actions in IIoT systems. There-

fore, this work uses two-dimensional features to describe user identities, which can

meet the IIoT application requirement for high security performance. However, the

construction, preprocessing, extraction, and joint authentication of two-dimensional

operation action features will bring a certain storage burden and more time consump-

tion. Therefore, in the follow-up research, we should design a better multi-dimensional

feature fusion algorithm, which can reduce the storage and time consumption of the
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algorithm while obtaining high security performance.

In the process of user two-dimensional feature enrollment, when a new user joins

the authentication system, we require the user to complete specific operation actions

according to concerned work business process, thereby completing enrollment and

storage of user two-dimensional features. In future work, we will further research

and develop the dynamic registration and update method of user two-dimensional

features to improve the usability of the authentication framework.

5.7 Summary

For IIoT authentication requirements of high security performance in the DO

layer, this work proposed a novel two-dimensional passive authentication framework

by exploiting both the time-varying characteristics of the user sequential operation

actions and spatial-temporal variation characteristics of WiFi CSI caused by opera-

tion actions. We demonstrated that the new framework enables a flexible and efficient

authentication performance control to be achieved by adjusting the system parame-

ters like the weights of the two designed classifiers. Thus, the proposed framework

is promising for satisfying different authentication performance requirements across

various IIoT scenarios. Moreover, it is expected that the passive authentication solu-

tion developed in this work can be used as a promising supplement or alternative to

the traditional pin-based and pattern-based active authentication methods to achieve

security enhancement in the IIoT systems.
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CHAPTER VI

Conclusion

To satisfy three general requirements for user authentication in IIoT systems, we

developed corresponding three schemes to ensure the secure operation of IIoT systems.

First, for user authentication of the ME layer, this dissertation explored the common

behavioral biometrics from user sequential operation actions in IIoT systems to pro-

pose a passive authentication framework, which provided continuous/non-intrusive

user authentication and posed good anti-interference capability in the interference-

intensive environment of the ME layer. Second, for user authentication of the MC

layer, we explored the user consecutive screen-touch actions during routine work

processes and proposed a passive authentication method based on both the time-

varying characteristics and spatial image characteristics of the user touch trajectory

sequences, which provided implicit/non-intrusive user identity verification and can

meet the real-time authentication requirement of the MC layer. Finally, for user au-

thentication of the DO layer, we developed a novel two-dimensional passive authenti-

cation framework by jointly utilizing both the time-varying characteristics of the user

sequential operation actions and spatial variation characteristics of CSI caused by

these actions, which applied to the authentication of the DO layer with high security

requirement.

We studied in Chapter III an IIoT application scenario with more electromagnetic
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interference, where legitimate users interacted with IIoT systems through mobile de-

vices (industrial-level terminals) in the presence of a potential attacker. We used

sensor motion characteristics of multiple operation actions to characterize user iden-

tities, and leveraged the Kalman filtering and Wavelet techniques for interference

elimination and the singular value decomposition method for the dimensionality re-

duction of characteristics. We then developed a multiple characteristics-based passive

authentication framework for continuous and non-intrusive user identity verification

for IIoT systems. Our results showed that the new passive authentication framework

enables a flexible authentication performance control to be achieved by adjusting the

system parameters like the length of operation sequence, number of features, size of

user space, and the proportion of a certain action feature. Thus, the proposed frame-

work is promising for satisfying different performance requirements across various

IIoT scenarios.

For authentication solution exploiting touch-based features of time-varying screen-

touch trajectory sequences and cumulative consecutive screen-touch trajectory images

from user touch actions during routine work processes, we investigated in Chapter IV

an IIoT system with the high real-time requirement. We explored touch-based fea-

tures of time-varying screen-touch trajectory sequences and cumulative consecutive

screen-touch trajectory images from user touch actions during routine work processes

in IIoT systems and developed a touch-based passive authentication framework for

continuous user identity verification. In the authentication solution, every time a user

touched the screen, the IIoT authentication system can verify the user’s identity by

analyzing the time-varying features of touch trajectory sequences and STTI character-

istics. We further demonstrated that the performance of the proposed authentication

framework in terms of false acceptance rate, false rejection rate and equal error rate,

and also examined the related authentication efficiency issues such as the sensitivity

to the weights for classifiers, the sensitivity to authentication time and the capability
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of resisting against impersonation attacks.

In Chapter V, we addressed passive user authentication issue with high security

requirement. We first developed a new method to characterize the behavioral bio-

metric characteristics of users in IIoT scenarios. We then proposed a new approach

to depict the spatial-temporal variations of CSI related to a user, in which the WiFi

CSI data related to the user was first sliced to reduce the noise and interference from

the random actions of the user. We further designed two classifiers corresponding to

the above two characteristics. By combining these two classifiers and assigning each

classifier an appropriate weight, we thus developed a novel two-dimensional user au-

thentication framework for passive, continuous and non-intrusive user authentication

in IIoT scenarios. We conducted extensive experiments to evaluate the performance

of the proposed authentication framework in terms of false acceptance rate, false

rejection rate and equal error rate, and also examined the related authentication ef-

ficiency issues such as the sensitivity to the weights for classifiers, the sensitivity to

authentication time and the capability of resisting against impersonation attacks.

It is notable that, this thesis explores common behavioral biometrics from sequen-

tial user operation actions, spatial-temporal touch-based features, and two-dimensional

features involving user routine operation actions to develop novel user authentication

frameworks for passive, continuous and non-intrusive user authentication in IIoT sce-

narios. We demonstrated that the new framework enables a flexible and efficient

authentication performance control to be achieved by adjusting the system parame-

ters like the weights of the two designed classifiers. Thus, the proposed framework

is promising for satisfying different authentication performance requirements across

various IIoT scenarios. Moreover, it is expected that the passive authentication solu-

tion developed in this thesis can be used as a promising supplement or alternative to

the traditional pin-based and pattern-based active authentication methods to achieve

security enhancement in the IIoT systems.
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[91] N. Garćıa-Pedrajas and D. Ortiz-Boyer, “An empirical study of binary classifier
fusion methods for multiclass classification,” Information Fusion, vol. 12, no. 2,
pp. 111–130, Apr. 2011.

[92] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 785–794, Aug. 2016. [Online]. Available:
http://dx.doi.org/10.1145/2939672.2939785

[93] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” SIGCOMM Comput.
Commun. Rev., vol. 41, no. 1, pp. 53–53, Jan. 2011. [Online]. Available:
https://doi.org/10.1145/1925861.1925870

146



[94] O. Edfors, M. Sandell, J.-J. van de Beek, S. Wilson, and P. Borjesson, “OFDM
channel estimation by singular value decomposition,” IEEE Transactions on
Communications, vol. 46, no. 7, pp. 931–939, Jul. 1998.

[95] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the
application of the theory of probabilistic functions of a markov process to au-
tomatic speech recognition,” The Bell System Technical Journal, vol. 62, no. 4,
pp. 1035–1074, Apr. 1983.

[96] K. W. Choi and E. Hossain, “Estimation of primary user parameters in cog-
nitive radio systems via hidden markov model,” IEEE Transactions on Signal
Processing, vol. 61, no. 3, pp. 782–795, Feb. 2013.

[97] A. Suarez and J. Lutsko, “Globally optimal fuzzy decision trees for classifi-
cation and regression,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 12, pp. 1297–1311, Dec. 1999.

[98] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting,” The annals of statistics, vol. 28, no. 2, pp. 337–
407, Apr. 2000.

[99] G. Webb and Z. Zheng, “Multistrategy ensemble learning: reducing error by
combining ensemble learning techniques,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 8, pp. 980–991, Aug. 2004.

[100] Q. Sun and Z. Ge, “Deep learning for industrial kpi prediction: When ensemble
learning meets semi-supervised data,” IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 1, pp. 260–269, Jan. 2021.
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