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Intermittent Phase Transitions in a Slider-block Model
as a Mechanism for Earthquakes

VLADIMIR B. RyaBov! and KEISUKE ITo!

Abstract — The aperiodic behavior of a two-dimensional stick-slip slider-block model of earthquakes
is the subject of this study. The phenomenon of temporal phase transitions between creep and stick-slip
motions is thoroughly analyzed and attributed to type-I intermittency. Asymmetry in the elastic forces is
shown to play a key role in the emergence of complex behavior in the model. The unpredictability of
chaotic bursts in the intermittent regime indicates potential difficulties for earthquake forecasting.
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1. Introduction

The conjecture that complicated spatio-temporal patterns of seismic activity may
originate from the chaotic dynamics of tectonic plates at their interface has recently
attracted considerable attention. Various models comprising blocks, springs and
nonlinear friction have been proposed to clarify the basic mechanisms underlying the
apparent irregularity of seismic events (BURRIDGE and KNOPOFF, 1967; DIETERICH,
1978, 1979; Ito, 1980; RUINA, 1983; RICE and TSE, 1986; NUsSBAUM and RUINA,
1987; CARLSON and LANGER, 1989; HUANG and TURCOTTE, 1990a, b; Gu and WONG,
1991; HE et al., 1988). An important motivation for many of these studies emanates
from the hypothesis that if the dynamics of earthquakes is indeed a deterministically
chaotic process then it appears possible to develop an efficient short- or intermediate-
time prediction algorithm for large earthquakes (KEILIS-BOROK, 1997).

A simple mechanical system that can serve as a prototype in modeling
seismicity is shown in Figure la. It consists of the block of mass m attached by
springs of stiffness k., to the motionless walls. The bottom of the block is in
contact with a surface moving slowly (at a speed ) in an arbitrary direction. The
main source of complexity in this class of models is a nonlinear dry friction law
which in the simplest case is just velocity weakening. This means that, after the
static friction force between the bottom of the slider and the surface exceeds a
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Figure 1
(a) Mechanical model of earthquakes. (b) Schematic of three-dimensional configuration of tectonic plates,
e.g., in the vicinity of a subduction zone. Tectonic plate A moves to the left, submerging under plate B also
moving along the fault. Part B” (counterpart of the block in our model) of plate B experiences complicated
deformations which are substantially different vertically (low elastic rigidity) and horizontally (high
rigidity).

certain threshold, the block begins to slide. In the sliding phase, the higher its
velocity the lower the (now dynamic) friction force. It is now well-established
(SHAW, 1995; ScHOLZ, 1990) that this kind of friction-velocity relation is sufficient
to produce periodic stick-slip oscillatory behavior. It should be noted that similar
behavior of the slider can be obtained with other types of friction laws such as slip
weakening (SHAW, 1995) or rate- and state-dependent friction law (DIETERICH,
1978, 1979; RuUINA, 1983). By the introduction of additional degrees of freedom as
state variables, the latter also makes it possible to reproduce various complicated
oscillatory regimes (Gu and WONG, 1991), which have been observed in
experimental situations with different block and substrate materials. However,
this model is intrinsically high-dimensional, since it is a priori unclear how many
state variables should be used to describe the friction force. Therefore, the
dynamics of the model proposed by Dieterich and Ruina is strongly dependent on
the controls: this makes the analytical treatment complicated or impossible, and in
many cases does not allow an unambiguous interpretation of experimental results
in terms of simulation parameters.

In the present article, we propose a generalized stick-slip model of earthquake
dynamics. Contrary to previous studies, we concentrate not on the complexity in the
behavior resulting from rate- and/or state-dependent friction, but consider a dynamic
mechanism for chaotic motion, based on the asymmetry of elastic forces and the two-
dimensional character of the problem. This approach reveals a new mechanism of
switching between creep and large amplitude stick-slip motion, which might be
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important for modeling earthquakes. We stress that the intermittent mechanism
discussed below is almost independent from the details of the friction law. The only
factor used in the analysis is the presence of instability (velocity weakening in the
study) at the initial stage of motion. Note also, that most spring-block models
studied to date were in fact one-dimensional, although the problem at hand has at
least two physical dimensions, for it corresponds to the processes at the surface of
contact between two tectonic plates. Even in the two-dimensional numerical
simulation of the multiblock fault model performed by CARLSON (1991), each block
was allowed to move only in a single direction of the driving force.

As an illustrative example of one possible configuration in which asymmetry in
the elastic forces may play a crucial role in the seismic dynamics, we show in
Figure 1b a hypothetical situation within a subduction zone, where a plate, A4,
submerges under a plate, B, while the latter also experiences a lateral displacement
along the fault. Taking into account the rigidity of the lithosphere, which may be
several orders of magnitude higher in the horizontal direction than that in the vertical
one, it becomes clear that part B’ of plate B experiences approximately the same,
highly asymmetric, distribution of elastic forces as the block shown in Figure la.

It has been recently shown by VASCONCELOS (1996), in the case of seismic activity,
when the magnitude of the velocity |d] tends to zero, the one-dimensional model can
demonstrate two basic types of motion: creep and stick-slip, the former being also of
stick-slip type, however of infinitesimally small amplitude. The most interesting
feature found by Vasconcelos is the phenomenon similar to phase transitions of the
first order between these two types of behavior, when the parameter ¢ (defined below)
that controls the intrinsic instability of the friction law is varied. However, since the
model of VASCONCELOS (1996) is one-dimensional, it lacks a mechanism for temporal
transition between the phases, therefore, the model is unable to demonstrate complex
behavior at fixed values of the control parameters. We show that, if a second degree
of freedom is introduced to the geometry of the model, the heterogeneity of the
restoring elastic forces can result in intermittent switching between creep and stick-
slip oscillatory regimes. The presence of a second degree of freedom in our model
makes the generalized instability parameter, which controls the phase transition,
dependent upon the coordinates of the sliding block. As the coordinates change with
time, this property provides a natural mechanism for temporal phase transitions
between creep and stick-slip phases of motion.

The importance of anisotropy in the parameters of stick-slip oscillators for
producing complicated temporal dynamics was first recognized by HUANG and
TURCOTTE (1990a,b), who analyzed a two-block configuration in a seismological
context. The presence of asymmetry was claimed to be a necessary condition for
chaotic regimes to appear in this system. Although it was later demonstrated by
RyABoV and IT0 (1995), DE SOUSA VIEIRA (1999), that this property is not necessary
for complexity to manifest itself, it is undoubtedly one of the most important factors
to be considered for the analysis of interaction between tectonic plates.
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2. Mathematical Formulation of the Problem

We start with the equations of motion for the two-dimensional slider shown in
Figure 1

mi = —kyx + F" = —kex + |F| cos(p')
—kyy + [F| sin(p”)

(1)

mj):_ yy+P;{‘r

where x and y are coordinates of the block of mass m (in the following, by rescaling
the time coordinate, we can always put m= 1), dot denotes time differentiation, k, ,,
stand for stiffness coefficients of the springs along x and y axes, F)f; are the Cartesian
components of the friction force of magnitude |ﬁf’| and the direction defined by the
angle ¢/". We assign the amplitude of the friction force to be

|[F"'| = Ryoo([5) (2)

where |7,| = \/ (& —o) + (- ocy)2 is the relative velocity of the slider with respect to
the substrate, o, , are the components of the substrate velocity, ®(|7,|) is an arbitrary
continuous monotonically decreasing function of the relative velocity satisfying the
condition

(0)=1; 9'(0) =—y/F 3)

where prime denotes the differentiation with respect to velocity. In fact, equations (2,
3) define two important physical parameters of the problem: the threshold value of
the dry friction, F,,, and the instability rate y imposed by the friction force at the
initial phase of slip motion. A substantial difference of the present model compared
to its one-dimensional counterpart consists in the necessity to take into account the
direction of the friction force. Generally, in the slip phase of motion, friction is
thought to be directed in the opposite direction to the velocity. At the same time,
when the block is stuck, friction balances the restoring elastic force, hence, pointing
to the reverse direction of the elastic force. Therefore, when the block starts to move,
the orientation of the friction force should be somehow switched to the direction
opposite the velocity. If the model is one-dimensional, the elastic force and velocity
are collinear and the direction of the friction does not change as the slip starts.
However, in a two-dimensional state, the immediate switching in the directivity of
friction can cause a jerk in a certain direction at the very beginning of the slip phase
of motion. The importance of temporal changes in the direction of friction force has
been recently recognized in the analysis of a 3-D rupture process by MADARIAGA
et al. (1998). They also stressed the necessity to introduce slip-weakening at the
beginning of the slip event. To preserve the continuity of the block motion, we
assume that at the initial stage of the slip phase, the friction force is directed opposite
of the elastic force. As the velocity of the block increases, the direction of the friction
force is changed to the direction opposite the velocity, otherwise the block may never
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reach the stick stage again. We therefore state that when the block is accelerated, the
angle between the vectors of friction force ¢/ and stress ¢¢ is defined by

(pﬂ = —qDez + AQD[I - exp(—Qlﬁrl)]

o 4)
Ap = ¢ — "

where ¢ and ¢" are the directions of the elastic force and relative velocity
respectively, and Q is the parameter controlling the process of switching the
direction. Basically, the parameter Q describes the memory effect in the friction law.
(It is well known from many rock friction experiments that the slider at the initial
stage of motion ‘“keeps the memory” of the previous stick condition.) In the
deceleration phase of the block motion, the friction force direction is fixed to the
value attained at maximum velocity, otherwise the block may never reach the stick
state. So defined, the friction law is, in fact, both rate- and state-dependent, and such
a formulation is consistent with that of Dieterich and Ruina; the parameter Ap here
playing the role of a state variable 0. Note however, that in our formulation, the state
variable does not produce an additional degree of freedom to the problem, as it is
defined not by a separate evolution equation, but by an explicit relation (4). Our
approach is also close in spirit to that used in COCHARD and MADARIAGA (1996);
MADARIAGA et al. (1998), who applied different (state- or rate-dependent) friction
laws at different stages of the sliding process. Note also, that some of previously
performed one-block simulations (see, e.g., GU and WONG, 1991), although called
one-degree-of-freedom, were, in fact, several degrees of freedom dynamical systems,
since state variables of the friction law introduced additional degrees of freedom to
the problem.

3. Details of the Dynamics

From a general viewpoint, the system (1) consists of two couples oscillators
corresponding to the motions of the block along x and y axes. Qualitatively, its
dynamics are little different from that of two stick-slip oscillators (HUANG and
TURCOTTE, 1990a, b; RyaBov and ITo, 1995; GALVANETTO et al., 1995), although
certain differences exist. As we are mainly interested in modeling seismicity, we shall not
consider various oscillatory regimes which occur at large values of driving velocity
(ELMER, 1997), and concentrate on the limit |5] — 0. Our analysis reveals that when
|of] < 1 the system can demonstrate two qualitatively different types of behavior (see
also VASCONCELOS, 1996), to be further referred to as creep and strong motions. The
distinction between the two oscillatory regimes consists in the amplitude of stick-slip
motion experienced by the block, the former being of the order of |, i.e., of very small
amplitude, while the latter being independent of |&| and of comparatively large
amplitude. When the control parameters are varied, motion of the block can change
between periodic, quasiperiodic, and chaotic, depending on the initial conditions and
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parameter values. It should be noted that either creep or strong motion can be of any
type, e.g., a chaotic creep or periodic strong, or any other combination. In our view, the
most interesting chaotic regime observed in this system includes both creep and strong
motions: first, because it occupies a considerable area in the control parameter space,
and, second, it provides an insight to the process of switching between creep and strong
motion, characteristic of earthquake activity on a well-developed fault. A feature of this
switching process is that it happens due to the intrinsic dynamics of the system, without
any variation of the controls or external conditions.

Let us now consider how a chaotic motion appears in this system. The stick-state
boundary (SSB), i.e., the line on the X-Y plane where the elastic force equals the
maximum static friction value, plays an important role in the dynamics of the system.
It is defined by the equation

(h)* + (k) = Ff - (5)

After the block reaches the SSB, it begins to slip. However, a characteristic amplitude
of the slip motion depends on the position of the starting point on the SSB. Indeed, if to
introduce a local rotated coordinate frame (U, V') with abscissa directed along the
elastic force, and the origin located at an arbitrary point on the SSB, (xssp; yssg), then,
for the initial (linear) stage of block motion the linearized version of equation (1) is

3.2

U= — %4_% u
2 2
£ Fj

+ kxkyxssnyssn

R (ky = K)o+ yli + o] (6)

v=0

where o, is the projection of the velocity vector & to the U axis. The solution of the
second equation of (6) is simply v = —a,¢. After substituting it into the first equation,
and introducing the variable z as z = u + uy + ut, parameters
_
=
3,2 3.2
kixge + knySB . _ kxkyXssy Vssn
2 ) =% 2
£ £

U
Uy (v — a,A); p=

(kx - ky)

then, finally, performing algebraic transformations, we obtain instead of (6) the
equation of a linear oscillator with respect to the new variable z

Foypi4Az=0 .

This equation has been studied in detail by VASCONCELOS (1996). The most
important conclusion derived in this work is that the character of the solution in
Eq. (6) is defined by the parameter & =7?/(44), and in the limit | — 0 the
amplitude of stick-slip oscillations vanishes if 6 < 1, whereas it remains finite for
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0 > 1. As the parameter § passes through its critical value of unity, the system
undergoes a phase transition of the first order, switching from the creep motion to
the large amplitude stick-slip.

In the two-dimensional model, the dynamics depends on the asymmetry of the
elastic force. If it is symmetric, i.e., k. = k,, then 4 =k, = k,, the parameter
becomes independent of the coordinates of the block, and the model is intrinsically
one-dimensional. If, however, asymmetry is present, then the amplitude of the block
motion in the slip phase depends on its start position on the SSB ellipse. If, in
addition, the direction of the velocity & is chosen so that the block creeps along the
SSB, then a chaotic attractor can appear in the phase space of the system.

A fragment of a typical chaotic trajectory of the block on the X-Y plane
corresponding to a characteristic cycle between two large slip events is shown in
Figure 2a. After a previous large slip event the block sticks and is pulled by the lower
surface to the SSB, reached at the point A. If the value of the parameter d is less than one
at this point, a small slip event occurs, the block slips, then sticks at the point A’
(Fig. 2b). Then it is pulled back to the SSB, and slips again from the point A”. This
recurrent motion (creep) continues until the critical point (B in Fig. 2a) is reached,
where 6 = 1. Here the phase transition occurs, and the next slip event has a large
amplitude. In the time domain, the motion looks reminiscent of the phenomenon of
intermittency, since the block is most often either stuck or in the creep phase of motion

(a) (®)
0
. 0184 1
~ 8
-0.1
0.188 | A u
A =V..
X A
-0.2 e
Y -0.192 |
03 | .
-0.196 - . _—
0.4 B =
ol T
-0.5 o
SSB /
-0.6 - -0.204

' X
-0.03 -0.01 0.01 X -0.0244 -0.024 -0.0236

Figure 2
(a) Chaotic trajectory of the block on the XY plane at m =1, k., =38, k, =2, y=7, F=1, Q =50,
o, = —2.67 x 1074, o, = —9.63 X 107*. (b) Enlarged area in the vicinity of point A (creep motion).
Unmarked line corresponds to the stick state of the block, circles mark the slip phase of motion, squares
denote stick state boundary line.
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interrupted by large slip events. We attribute this regime to type-I intermittency, using
the classification proposed by POMEAU and MANNEVILLE (1980). In Figure 3, a
probability distribution for time intervals between two consecutive large events is
plotted. A characteristic feature of this distribution is a clear cutoff at large values of
interevent times, typical of type-I intermittency (BERGE et al., 1984).

It should be noted, however, that, contrary to the conventional type-I intermittency
found in many physical systems, the intermittent behavior in this model is an intrinsic
property of the system, in the sense that it occupies a large area in the control parameter
space, not only a small strip adjacent to a saddle-node bifurcation. Moreover, as we
show below, it is not related to any saddle-node bifurcation.

To gain further insight into the intermittent behavior of the model, we consider
the one-dimensional mapping that describes the dynamics of the system (see also
GALVANETTO and KNUDSEN, 1997). We use for this purpose the transformation of
the accessible part of the SSB to itself during one stick-slip cycle. Figure 2b shows the
relationship between the position of points like A and A” on the XY plane for any
point that belongs to the SSB and can be reached by the block. It is convenient to
express this function in terms of the variable 0 = arctan|k, s/ (kcXsss)], defining the
orientation of the elastic force at the SSB. The map is obtained by numerically
integrating Eq. (1) for one slip and stick cycle and all the initial conditions located on
the SSB. An example of the resulting map is given in Figure 4. Note that it possesses
two necessary ingredients for intermittent motion: a narrow channel between the
graph and diagonal, where the phase trajectory evolves during a laminar phase of
intermittent behavior, and the part responsible for reinjection of the phase trajectory
to the channel. For the present model, the laminar behavior corresponds to the creep
motion of the block, whereas irregular bursts of high amplitude are, in fact, large slip
events (phase transitions).

0.06

)
b4

0.02

Occurrence probability

0 40 80 12
Interevent time interval

Figure 3
Histogram of time intervals between successive earthquakes (distribution of laminar phases in the
intermittent regime). Parameters are the same as in Figure 2, except o, = —2.67 x 107, o, = —9.63 X 1073
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Phase transition

Figure 4
Intermittent one-dimensional map for the system (1) for the parameter values corresponding to Figure 2. If
|&] — 0 the width of the channel between the map and diagonal vanishes and the slope at the phase
transition point becomes vertical.

The width of the channel is defined by the amplitude of slip events in the creep
phase, which, in its turn, is proportional to the velocity of slow motion |#]. The value
of the parameter |4 has been estimated by CARLSON and LANGER (1989);
VASCONCELOS (1996), to be of the order of 107 in the case corresponding to
earthquakes. Therefore, the channel should always be narrow, not because the
system is close to saddle-node bifurcation, but due to the extermely small value of |4].
This means that, as far as |d] < 1, intermittency is a typical phenomenon for this
particular model, if other parameters are properly tuned to ensure the reinjection of
phase trajectory into the channel.

4. Discussion and Conclusion

To conclude, we would like to outline certain important consequences for
earthquake analysis, ensuing from the model described above. It is first interesting to
note that during much of the time between consecutive large earthquakes, shear
stress may be close to its critical value. For example, in Figure 5 we plot the time
evolution of stress and energy regarding the intermittent character of the dynamics.
Note that shear stress (elastic force) is close to its maximum and is kept almost
constant during the creep phase of motion, while the amount of accumulated energy
continues to grow as the block moves along the SSB to the point of phase transition
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Figure 5
Time evolution of shear stress (upper curve) and elastic energy (lower curve) accumulated in springs for the
intermittent regime of switching between creep and large amplitude motions.

(earthquake). Qualitatively this means in terms of shear stress that the earthquake
cycle, defined as the time between two consecutive large earthquakes, consists of
three parts. In the first part, stress and energy grow linearly with time, which
corresponds to the classical elastic rebound theory. In the second stage, which may
be approximately of the same duration as the first, stress is nearly constant, while
energy continues linear (or almost linear) growth until the critical point. The third
phase is a fast stress and energy drop corresponding to an earthquake. Therefore,
quite contrary to the common view, the observation that shear stress has reached a
threshold value may not be evidence of an approaching earthquake.

Another feature of the model is the presence of a maximum in the distribution of
interevent time intervals (Fig. 3). This property is consistent with the theory of
characteristic earthquakes, which states that large seismic events are approximately
periodic. As there is no exact periodicity in any sequence of natural earthquakes, the
intermittent chaotic regime in the proposed model may be a good simulation of
seismic activity at a separate fault or fault segment.

Finally, if type-I intermittency is indeed the mechanism for real earthquakes, then,
contrary to expectations mentioned in the beginning of this article, it appears
impossible to produce an effective prediction of the next large slip event by applying the
group of methods based on the concept of embedding and correlation dimension
analysis (WEIGEND and GERSHENFELD, 1993). For example, in Figure 6 we plota return
map for time intervals between to successive large events. The absence of apparent
clustering of points on this plot indicates poor predictability in the time domain. The
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Figure 6
Time interval between successive earthquakes vs. the same characteristic calculated for two previous
events. Values of control parameters correspond to Figure 3.

main reason for this is the sharp drop of the local map function in the vicinity of the
phase transition (reinjection) point, that renders the expansion rate of the phase flow
during large events extremely high. This means that the prediction produced for this
model by any method from the dynamical systems theory discussed, e.g., in WEIGEND
and GERSHENFELD (1993), would not be better than that for a linear stochastic process.
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