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Abstract The analytical conditions for the appearance of chaotic motion in a broad class of nonlinear oscillatory systems

are analyzed by means of Lyapunov exponents. It is shown that any instability, like, e.g., saddle-node bifurcations,

period-doubling cascades or chaotic behavior can occur when the amplitude of motion exceeds certain threshold, defined by

the tradeoff between nonlinearity and damping.
Keywords:

1. Introduction

Dissipation and nonlinearity are two principal factors
responsible for the appearance of complex behavior in
dynamical systems. The former one defines the
contraction of phase space with time that ensures the
existence of attracting sets (regular and strange attractors),
whereas the latter produces the stretching and folding
necessary for the formation of self-similar structures in
the phase space, like, e.g. strange attractors or fractal
basin boundaries. Despite general understanding of the
interplay between these two factors in nonlinear dynamics,
it remains an extremely difficult task to predict the
behavior of the given system for arbitrary levels of
nonlinearity and dissipation.

In this paper we analyze how the tradeoff between
nonlinear results in the

and dissipative properties

appearance of  complex behavior in passive

non-autonomous oscillators, an important class of

dynamical systems wused in many applications in

electronics, optics, acoustics, etc. [1]. As a rule, for a

dissipation, nonlinearity, Lyapunov exponents, stability, bifurcation, nonlinear oscillator

generic nonlinear oscillator no rigorous analytical method
exists that can be used for predicting the dependence of
its behavior on the control parameters. That is why a
traditional scheme for understanding the dynamics of
nonlinear systems can be roughly formulated as follows.
At the initial stage, a linear system is introduced that can
approximate the original system, thus providing some
intuitive view on its properties. Then, the broader class of
equations called weakly nonlinear systems is considered,
that gives a solution in the area of controls where
nonlinearity and dissipation are “small”. Such an
approach allows a set of powerful analytical methods to
be used based on the ideas of asymptotic expansions
and/or averaging, that finally enables one to obtain
constructive results concerning the stability of regular
oscillatory regimes and their bifurcations. Finally, for
arbitrarily large values of the parameters responsible for
nonlinear and dissipative properties of the system, the
extensive numerical experiments have to be utilized for

the analysis of, e.g., chaotic attractors, intermittency,
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attractor crises, and other bifurcations typical of strongly
nonlinear regimes.

It should be noted that, although the asymptotic
methods can be effectively exploited for rather moderate
values of nonlinearity and dissipation, the question of the
validity of such results remains open and the predictions
obtained by these methods should be always checked by
the direct numerical simulation. This apparent drawback
of the asymptotic methods originates from the absence of
unambiguous definition of the notions of “weak” and
“strong” nonlinearity, as well as of constructive methods
of calculating the areas of “weak nonlinearity” in the
space of control parameters. Intuitively it is clear that the
degree of nonlinearity in the given dynamical system is
related to the amplitude of motion, being large for the big
amplitude and small for the motion in the close vicinity of
equilibrium. A classical example of such a system is
mathematical pendulum, whose dynamics is well
described by linear equations in the vicinity of its
equilibrium position, and become quite complicated in the
area of big deviations.

The problem of defining the threshold amplitude in a
nonlinear system, below which the dynamics can be
considered linear or “almost” linear, remains one of the
most important from the applications viewpoint. It is
closely related to the problem of stability of the given
system describing, e.g., an electronic device or circuit
and thus constitutes a fundamental issue to be solved in
the development of any application utilizing nonlinear
elements [2,3]. ,

Until very recently, the stability analysis in nonlinear
dynamical systems was based on the assumption that only
periodic and quasiperiodic motion can exist in the
stationary regime. Under such an assumption, the final
goal of predicting the stability of the given system at the
given values of controls can be reached by the
Floquet-type analysis [1,2] of linearized eqyuations in the
vicinity of a stationary periodic or quasiperiodic

oscillation. Nowadays, with the discovery of the
phenomenon of deterministic chaos, it became clear that
the traditional methods of stability analysis have to be
revised with taking into account the possibility for the
chaotic motion to appear. On the other hand, the burst of
activity in the field of nonlinear dynamics spurred by this
discovery in the middle of 60-s, has led to the invention
of new powerful methods of analysis that can be
efficiently applied for predicting the raise of instabilities

in dynamical systems of virtually any physical origin,

Information, and Communication Engineers

including various electronic devices and circuits [3].

In this paper we apply a recently proposed method of
stability analysis [4] based on the ‘notion of Lyapunov
exponents for predicting the general kind of instability in
oscillatory systems. From a slightly different perspective,
the method establishes the threshold of stability in terms
of the amplitude of oscillations that guarantees the stable
operation of the devices or circuits described by similar
sets of differential equations.

Lyapunov characteristic exponents (LCE) provide a
quantitative measure of stretching and contracting
deformations of an infinitesimally small phase space
sphere in the vicinity of an arbitrary trajectory in a
dynamical system. So defined, they also characterize the
divergence (convergence) rates of two initially close
trajectories residing on an attractor and serve as
indicators of the stability of motion. Total number of
Lyapunov exponents that a system possesses is equal to
the dimension of the phase space, or, in other words, the
number of independent variables necessary to fully
characterize the motion. Being invariant under a smooth
change of coordinates, LCE provide a useful quantitative
measure of stability for various types of motion including
complex quasiperiodic orbits and chaos and, together with
other dynamic invariants like fractal dimension and
Kolmogorov-Sinai entropy play an important role in the

theory of nonlinear dynamical systems.

2. Problem posing and mathematical formalism.

Under rather general assumptions on the type of
dynamical system that models, e.g., the electric current in
a simple nonlinear circuit [1] or the temporal variation of
mode amplitude in a electromagnetic resonator filled with
a nonlinear medium [3], the mathematical description can

be given by differential equations of the form

d’x
dt?

. dx.
. +wgixi+6id_;+Ni(x’%)=fi(t) (1)

where x; is the generalized coordinate of i-th oscillator,
i=12,.,m, number of oscillators, w, - their natural

frequencies, 6,- , damping parameters, N,-(.) , are
nonlinear functions describing coupling between the

oscillators and nonlinear properties of the system, f; (t),

_.32._
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external perturbations. In the discussion given below, we
restrict the consideration by the case of the focus type
singular point ‘at the origin of each oscillator that
corresponds to the physically important case of small
dissipation and éoupling between oscillators.

It is evident that the set of nonlinear oscillators (1)
belongs to a more general class of dynamical systems
described by the equation '

%=F(x,t) xER" ).

To analyze the stability of an arbitrary solution of Eq.

(1) X (t), one has to consider the linearized system [1,2]

“ilet )y, | 3)

&[&

where j(x*(t))s aF(x'(t))/Bx is nxn time dependent

Jacobian matrix, y is an n-vector in the tangent space

corresponding to an infinitesimal perturbation of the
trajectory x*(t). The standard algorithm of calculating

the spectrum of LCE [5] consists in solving the equations

(3) simultaneously with (2) for a set of mutually

orthonormal vectors {yk }(k =1, 2, ..., n) and estimating
the average expansion rates for the lengths p, =”yk” of

the vectors {yk}. The general solution of the equation (3)

is given by

where M(t) is the fundamental matrix of solutions for

the equation (3). It has been shown by Oseledec [6] that
for almost any choice of initial conditions there exists the

following long time limit for the initially orthonormal
vectors yk(O)
.1
g = lim ?ln”M(t)yk (o“. (4)
t—»oo

In other words this means that asymptotically, in the
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limit of t — - the evolution of "yk" is approximated

by “yk(tlt=||yk(0me;"" , where the exponents A

constitute the spectrum of LCE.

The equation (3) can be rewritten in the polar

coordinate frame for the amplitude p = ||y“ and directions

D, (m=1,2,..,n-1) of an arbitrary vector y in the

tangent space.

d
—(—l—t-[ln p(t) =P(‘P1:¢P2;---,q)n_1), (53)
d
%’* = (P, P Pps ), (5b)

where y,; are Cartesian components of the vector y,

n
pZ =2y12; and the angles @, can be found by the
[=1

direct formulas defining the transition from Cartesian to

spherical coordinates in R" [4].

It is easy to show merely from the definition of the
LCE that

1T
A = lim — (P, (cpl(t),cpz (t),...,cpn_l(t))dt.
T—.mTo

i.e., the LCE are long time averages of corresponding

functions of angular coordinates of the vectors {yk } The

functions Pk(cpl(t),qaz(t),...,cpn_l(t)) depend on both the
time and phase space coordinates and constitute the
spectrum of instantaneous growth rates (t)

) d[l” Pk (t)]

w () = o = Blesldozl) 9., (0)

If we arrange the values of A, in descending order,
then the instability means the positive value of the first

(largest) LCE, i.e. A; >0. It is evident, that A; can
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take a positive value only if J; can be greater than zero.

On the contrary, if the inequality

ni(t)<0 : (6)

holds all the time, the system is asymptotically stable, i.e.
all the perturbations are exponentially shrinking with time
and, hence, unstable motions are precluded. From the
inequality (6), together with Eqs. (2), (3), it appears
possible to obtain the relation between the control
parameters and phase space coordinates which guarantees

that the system is "safe" in the sense that, if the trajectory
never leaves the region with negative values of ®;, no
instability appears. The goal is reached by analyzing the
structure of the function Pl((pl(t),<p2(t),...,(pn_l(t)) s
together with solutions of Eq. (2), which define the
dynamics of angles ¢, through Egs. (5). It should be
however noted that a straightforward calculation of the
function P, does not always lead to the explicit equation

for the border of the asymptotic stability area in the phase
space. This happens due to the presence of both the
expanding and contracting directions around a typical
trajectory that is a consequence of the affine character of

the phase flow in the vicinity of a generic stable fixed
point. Fortunately, the particular form of the function B

depends on the choice of coordinates, and in many cases
it turns out possible to obtain the borders of the
asymptotic stability area by introducing a linear change of

coordinates diagonalizing the linear part of the flow
F(x,t) in the vicinity of an arbitrary point in the phase

space. This kind of transformation is known to be a

standard tool in the analysis of differential equations [7].

3. Non-autonomous passive nonlinear oscillator
As an example of a particular system governed by the
equations of the type (1), we take the single nonlinear

oscillator (motion in a potential well with a potential
Ul(x) defined by N(x)=dU(x)/dx)
d’x

dt—2+6%+ng+sN(x)=f(t) (7N
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Fig. 1. Areas of asymptotic stability (shaded) for the

case of two-well cubic potential.

that has been used as a basic model in many problems of
mechanics, electronics, optics, electromagnetic field

theory, etc.
By introducing the variables x; =x;x, =dx/dt the

system (7) is transformed to the standard form

dx,

— =x2

o ®
7t2-= -&x, —mgxl —EN(JC1)+f(t)

and the variational equations (3) in the vicinity of an

arbitrary trajectory x'(t) for this system look like

D1,
%2* = -(05)’1 -0y, - 5V(X* (t)))’]

where y;, are the components of the perturbation vector

Then, after the coordinate

1lsm07()

transform recasting the linear part of Eq. (8) to the

canonical (diagonal) form, the explicit expression for the

growth rate u; follows directly from its definition and

the equation for the norm of ”y||=p in the polar

coordinates:

-5 ___ZE__V(x* (t))cos(Z(p) B

,/4(1)5 -82

N |~

llz(t)=
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Under the assumption that ¢ can take any value in the

interval [0;2:rc] we obtain the explicit formulas for the

border of the asymptotic stability area
Vv, <eV(x)<V, (10)

where

Inequalities (10) thus define the limits of variation for the
function V(x) and, hence, for the coordinate x of the

nonlinear oscillator (7), ensuring the asymptotic stability
of motion.

To make precise the ideas developed above, let’s
specify the nonlinear function V(x) and consider, e.g.,

the case of single potential well Duffing oscillator, i.e.
the equation (7) with

Nlx)=x%; V(x)=%=3xz.

The direct application of the procedure described above
results in the following simple formula relating the value
of maximal stable amplitude of motion to the parameters

of nonlinearity & and dissipation 0

old + 2w,
X max =1f——— (1)
3e

The general observation immediately follows from the

inequality (11) that the higher the dissipation level, the

larger is the area of asymptotic stability around the origin.

The parameter of nonlinearity € has opposite effect on
the stability of motion, decreasing the size if the
asymptotic stability area. Therefore, it can be concluded
that nonlinearity and dissipation establish a balance

regulating the general stability properties of the system.

4, Two coupled oscillators

Two nonlinear oscillators with a diffusive coupling is a
classical system in the oscillation theory. It constitutes a
natural generalization of a single-degree-of-freedom
nonlinear oscillator to a more complex dynamical system,
necessary for understanding the multi-mode interactions
in the spatially distributed devices, like, e.g., optical

wave-guides or electronic tubes. In the simplest case of

identical oscillators with cubic nonlinearity (N(x)= ﬁx3)

Information, and Communication Engineers

and linear coupling, the system is described by the

following equations

d?x dx
1 +u)§x1 +ax13 +6——dt1 + KX, =f1(t)

2
a (12)
d“x,
dt?

dx
+w§x2 +s.x§_ +6—dt2 +Kx; = fz(t)

where Kk stands for the coefficient of coupling between
the oscillators. The direct application of the approach
given above combined with the canonical linear
coordinate trahsform results in the following equation for

the largest local expansion rate:

3
2u1(t)= ‘5‘78

U(isin 2¢cos’ 6 + isin 2¢sin’ 6)
Wy @3

+ V(isin dcos psin20 + ——1——cos bsin@sin 28)]
@; 2

2
2 2 07 _
where U=x12+x§; V=x12—x§; Wi, =W —T+K,

8% _
(mg _7+K20) , ¢,@,6 are the angles @, in Eq. (5).

Then, the condition of absolute stability (6) can be

formulated for this system as

5 dw,w
xl,x§< 172

(13)

38((1)1 +u)2)

Therefore, the stability of the system of two coupled
oscillators as a whole is defined by the amplitude of
oscillations of each of its subsystems. Note, that, exactly
like in the case of a single oscillator, the dissipation &

and nonlinearity € cause opposite effects on the stability.
However, since the partial frequencies ®; and w, also

depend on O, as well as on the parameter of coupling ¥,
the overall effect of dissipation on the system stability

becomes more complicated.

5. Conclusion

In this paper we discuss a novel method for the
stability analysis of oscillatory systems based on the
notions of asymptotic stability and Lyapunov exponents.

Our approach allows defining the area in the phase space
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where all trajectories are asymptotically stable and,
therefore, no bifurcation typical for nonlinear systems can
occur. In fact, the technique allows obtaining a threshold
in the amplitude of motion that ensures the asymptotic
stability of motion restricted from above by this value.
The maximal stable amplitude is shown to be conditioned
by the tradeoff between nonlinear and dissipative
properties of the system. It is shown that cumulative
effect of all the control parameters on the stability of the
system can be expressed via amplitude of motion in the
phase space. In particular, it is demonstrated that the
dissipation level as well as the parameters regulating the
nonlinear properties control the amount of nonlinearity
necessary for the appearance of complex behavior in
nonlinear systems.

It is interesting to note, that the found out area of
asymptotic stability in the phase space can be used for
specifying the notion of a weakly non-linear behavior of
the system. As we already noted in the introduction, one
of the fundamental problems in the theory of nonlinear
oscillators is to define the values of control parameters
and amplitude of motion, where the behavior of the
system can be considered almost linear. The method
described above not only establishes the required relation
between the controls and phase space coordinates where
strongly nonlinear effects are absent, but also provides a
constructive way of defining the very notion of
“linearity” and allows to quantify the difference between
“linear” and “nonlinear” behaviors. Since the area of
asymptotic stability guarantees the absence of any
strongly nonlinear effects (bifurcations) inside of it; then
any asymptotic methods of analysis can be successfully
applied here for finding the approximate solutions.

It has been recently recognized that in many oscillatory
systems the threshold of instability may be strongly
dependent on the frequency content of the external signal.
As it was shown, e.g., in [8], the change of harmonic to
bifrequency excitation in an equation of class (7) results
in considerable lowering of the instability onset in the
intensity of the external force. A natural question stems
from these findings: what is the lowest possible level of
excitation that can result in a destabilization of the
system? As we have demonstrated with several examples
of nonlinear oscillators, the analysis of asymptotic
stability in terms of LCE allows answering this question
and estimating the maximal stable amplitude of motion,
and thus provides a necessary condition for any

bifurcation to occur. We would like to stress that the
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method we propose is independent from the type of
external force and dimensionality of the dynamical
system, therefore, it yields a fundamental limit for all
types of instabilities, including chaotic motion, to appear

in a broad class of nonlinear circuits and systems.
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