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Abstract— We numerically and theoretically demonstrate var-
ious singularities, as a dynamical system, of a simple online
learning system of a recurrent neural network (RNN) where RNN
performs the one-step prediction of a time series generated by
a one-dimensional map. More specifically, we show first through
numerical simulations that the learning system exhibits singular
behaviors (“neutral behaviors”) different from ordinary chaos,
such as almost zero finite-time Lyapunov exponents, as well
as inaccessibility and power-law decay of the distribution of
learning times (transient times). Also, we show through linear
stability analysis that, as a dynamical system, the learning system
is represented by a singular map whose Jacobian matrix has
eigenvalue unity in the whole phase space. In particular, we state
that the singularity as a dynamical system (shown by the second
method) provides a basic reason for the neutral behaviors (shown
by the first method) exhibited by the learning system.

I. INTRODUCTION

While learning as well as the learning process has been well
theorized on the basis of statistics or statistical mechanics,
some studies have also reported that dynamic and complex
phenomena are often observed when we actually examine
individual learning processes. Indeed, such phenomena not
only in biological systems such as the brain but in even much
simpler, artificially constructed systems have been numerically
revealed by, e.g., Refs. [1], [2], [3]. To understand the highly
dynamic phenomena of biological systems such as the brain, it
is necessary to analyze the complex dynamics of the learning
process itself. The study of nonlinear dynamical systems will
provide a promising basis for this purpose. Therefore, in this
paper we investigate, not merely numerically but also theo-
retically, the dynamical characteristics of the online learning
process of a simple recurrent neural network.

A recurrent neural network (RNN) is one of the standard
artificial neural network architectures, having feedback con-
nections [4]. The presence of the feedback connections makes
the RNN a dynamical system with external inputs. Because of
this feature, the RNN is more suitable for the present study
regarding dynamics than is the other standard architecture, the
feedforward network [4]. If we suppose that the RNN is trained
using a deterministic online learning algorithm, the resulting

total system is also a dynamical system with external inputs,
although this feature also makes analyses of the online learning
of a RNN extraordinary difficult. In this study, therefore, we
focus on one of the simplest online learning systems obtained
from a RNN, and clarify the singularities of its learning
process as a dynamical system process by using numerical
simulations and linear stability analysis.

The outline of the present paper is as follows: Section II
provides preliminary materials. We briefly explain RNN and
its online learning algorithm which we use in this study. In
Sec. III we introduce a simple learning system where the RNN
performs the one-step prediction of a time series generated
by a one-dimensional map. This learning system itself is
represented by a map, and is the exact object of this study. In
Sec. IV, using numerical simulations, we show that singular
behaviors (“neutral behaviors”) different from ordinary chaos
are exhibited by the specific learning system where the RNN
learns a periodic time series of the logistic map. In Sec. V,
using linear stability analysis, we show that, as a dynamical
system, the learning system introduced in Sec. III is generally
represented by a singular map whose Jacobian matrix has
eigenvalue unity in the whole phase space. This fact provides
a basic reason for the neutral behaviors observed in Sec. IV.
Section VI provides a summary and discussion.

II. ONLINE LEARNING OF RNN

For the RNN, we choose a second-order recurrent neural
network [4]. The network is described by the following
equation:

yi(t + 1) = f(
m∑

j=1

n∑
k=1

wijkuj(t)yk(t) +
m∑

j=1

wijuj(t)

+
n∑

j=1

w′
ijyj(t) + wi), (1)

where the activation function is denoted by f(·). Also, the state
of the ith unit at discrete times t = 0, 1, 2, · · · is denoted by
yi(t) (i = 1, · · · , n), the jth external input at time t by uj(t)
(j = 1, · · · ,m), and the weights by wijk, wij , w

′
ij , wi. (wijk
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is the connection weight to the ith unit from the jth input and
the kth unit. wij is the weight from the jth input, whereas
w′

ij is that from the jth unit. wi is the bias. The weights wijk,
wij , w′

ij , and wi are represented as w∗ for convenience.) Also,
certain of the units are assumed to be visible (i.e., output units)
but the others are hidden.

In the case of RNN, learning is the process to make
the output trajectory follow a given desired trajectory by
improving the weights, with a given input sequence and initial
condition. As an online learning algorithm, we choose the
real-time recurrent learning (RTRL) algorithm [5], [6]. This
algorithm is based on the gradient decent of instantaneous
output error E(t + 1) = 1

2

∑n
i=1 µi [yi(t + 1) − di(t + 1)]2,

and its update rule is

w∗(t+1) = w∗(t)− ε
n∑

i=1

µi [yi(t + 1) − di(t + 1)] vi
∗(t+1),

(2)
where ε > 0 denotes a learning rate parameter, di(t + 1)
denotes a desired response for yi(t+1), and vi

∗(t+1) denotes
∂yi(t+1)

∂w∗
|w∗=w∗(t). Output units are specified by µi = 1;

otherwise µi = 0.
By assuming that the weights are constants, the approximate

equation for vi
∗(t) is derived from differentiating Eq. (1) by

w∗, yielding

vi
∗(t + 1) = f ′(si(t))

 m∑
j=1

n∑
k=1

wijkuj(t)vk
∗ (t)

+
n∑

j=1

w′
ijv

j
∗(t) + γ

 , (3)

γ =


δiaub(t)yc(t) if w∗ ≡ wabc

δiaub(t) if w∗ ≡ wab

δiayb(t) if w∗ ≡ w′
ab

δia if w∗ ≡ wa

where si(t) denotes the net input to the ith unit at time t, and
δia denotes the Kronecker delta. We note here that Eq. (3)
is a dynamical system with external inputs, with dynamical
variables {vi

∗}. Since the initial state yi(0) of the network
has no dependence on the weights, the initial condition for
Eq. (3) is vi

∗(0) = ∂yi(0)
∂w∗

= 0. Thus, the RNN trained using the
RTRL algorithm is confirmed to be a dynamical system with
external inputs by Eqs. (1)-(3), where the dynamical variables
are {yi, w∗, v

i
∗} and the external inputs are {ui, di}.

III. LEARNING SYSTEM

A closed dynamical system can be directly constructed by
generating the external inputs {ui, di} from another dynamical
system or another dynamical system with inputs. In this paper,
we study such a learning system, in particular the case in
which the RNN performs a one-step prediction of a time series
generated by a one-dimensional map. Let g and x denote the
one-dimensional map and its dynamical variable, respectively.
Then, the time series generated by g is given by

x(t + 1) = g(x(t)) t = 0, 1, 2, · · · , (4)

and thus the external inputs become u(t) = x(t) and d(t+1) =
x(t+1) for our prediction task. If the number of units is only
one (n = 1), the dynamical system obtained from Eqs. (1)-(4)
is given by

y1(t+1) = f(w111(t)x(t)y1(t) + w11(t)x(t)
+w′

11(t)y1(t) + w1(t))
w111(t+1) = w111(t) − ε [y1(t+1)−x(t+1)] v1

111(t+1)
w11(t+1) = w11(t) − ε [y1(t+1)−x(t+1)] v1

11(t+1)
w′

11(t+1) = w′
11(t) − ε [y1(t+1)−x(t+1)] v1

11
′(t+1)

w1(t+1) = w1(t) − ε [y1(t+1)−x(t+1)] v1
1(t+1)

v1
111(t+1) = f ′(s1(t))

[
w111(t)x(t)v1

111(t)
+w′

11(t)v
1
111(t) + x(t)y1(t)

]
v1
11(t+1) = f ′(s1(t))

[
w111(t)x(t)v1

11(t)
+w′

11(t)v
1
11(t) + x(t)

]
v1
11

′(t+1) = f ′(s1(t))
[
w111(t)x(t)v1

11
′(t)

+w′
11(t)v

1
11

′(t) + y1(t)
]

v1
1(t+1) = f ′(s1(t))

[
w111(t)x(t)v1

1(t)
+w′

11(t)v
1
1(t) + 1

]
x(t+1) = g(x(t)).

(5)
We treat this 10-dimensional learning system throughout the
following study.

IV. NUMERICAL SIMULATIONS

In this section, we show various singular behaviors (neutral
behaviors) of the learning system [Eq. (5)] by numerical
simulations. As a typical example, we present results obtained
by the learning system in which RNN learns a periodic time
series generated by the logistic map. The logistic map is a
one-dimensional map, given by

x(t + 1) = ax(t) [1 − x(t)] t = 0, 1, 2, · · · ,

where a is the only parameter [7]. The dynamics of this map
has been thoroughly clarified, and we can easily generate not
only a chaotic time series but also a periodic time series by
setting the parameter a appropriately.

A. Orbital Instability

First, we explore the orbital instability of the learning
system using the finite-time Lyapunov exponent. The time-T
Lyapunov exponent is the average exponential expansion (or
contraction) rate along the trajectory of length T . Actually,
the number of Lyapunov exponents is equal to the dimension
of the phase space, but we concentrate on the largest one.
As shown below, we find two typical classes of dynamical
behaviors.

We now show the results obtained from the learning system
[Eq. (5)] with the learning rate ε = 0.1 and the activation
function f(x) = 1/(1+ e−x) (these are used in the numerical
simulations shown hereafter unless otherwise noted). Figure
1(a) shows y1(t) and x(t) versus t for a = 3.3, where y1(0),
x(0), and w∗(0) [i.e., w111(0), w11(0), w′

11(0), and w1(0)]
are randomly chosen with uniform distributions in [0, 1] and
[-5, 5], respectively. The logistic map at a = 3.3 has a stable
period-two orbit, and thus the task for RNN is to fit the
output y1(t) to the period-two orbit. In the present example,
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Fig. 1. Time evolution for the period-two learning (a = 3.3). (a) y1(t) and
x(t) versus t. (b) The time-1 Lyapunov exponent versus t.

the learning results in success with y1(t)’s smooth approach
to x(t). Figure 1(b) shows the time-1 Lyapunov exponent
versus t, on the same condition as in Fig. 1(a). The finite-
time Lyapunov exponent is almost 0, but it oscillates around
t = 3500, where learning progresses substantially. 1 This kind
of smooth dynamical behavior is widely observed for other
chosen conditions, and forms one of the typical dynamical
behaviors of learning systems.

On the other hand, the other typical dynamical behavior is
presented in Fig. 2. Figure 2(a) shows y1(t) and x(t) versus
t for a = 3.835, where the logistic map has a stable period-
three orbit. Initial conditions are randomly chosen as before,
and the learning also results in success in this example. This
example, however, shows complex transient with intermittent
behavior; the transient appears to be chaotic, but in many short
time intervals it appears to be almost periodic as well. Figure
2(b) shows the time-1 Lyapunov exponent versus t, under
the same condition as in Fig. 2(a). The finite-time Lyapunov
exponent oscillates irregularly around 0. In contrast to simple
hyperbolic or near-hyperbolic chaos, this result indicates the
strong non-hyperbolicity of the dynamical system because of a
successively varying number of stable and unstable dimensions
under the dynamics. This type of complex dynamical behavior
is also widely observed in learning systems.

In either case, the above results show a singularity of the
learning system as a dynamical system. Indeed, finite-time
Lyapunov exponents ordinarily keep taking either positive or
negative values, even if they fluctuate.

1The Lyapunov exponent of the logistic map is sufficiently negative at a =
3.3, and therefore does not affect the largest finite-time Lyapunov exponent of
the total learning system. This remark is also applied to the case of a = 3.835
below.
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Fig. 2. Time evolution for the period-three learning (a = 3.835). (a)
y1(t) and x(t) versus t. (b) The time-1 Lyapunov exponent versus t ∈
[65000, 75000].

B. Basin Structure and Inaccessibility

In the above two examples, we saw cases in which lean-
ing results in success, but there are also cases in which
learning ends in failure, depending on initial conditions. To
study the structure of initial conditions (i.e., basin structure),
we introduce the following procedure to numerically decide
whether a learning process ends in success: If |yi(t)−di(t)| <
εcheck for successive ncheck time steps, then the learning
process is regarded as successful, where checking width εcheck

and checking time ncheck are chosen from sufficiently small
positive real numbers and sufficiently large natural numbers,
respectively. 2

Figures 3(a) and (b) show a 2-dimensional slice (w′
11 =

w1 = −5.0) through the 4-dimensional initial weight space for
the period-two learning (a = 3.3) and the period-three learning
(a = 3.835), respectively. Each initial condition on a 500×500
grid is followed until the time limit of 106 time steps, where
w111(0) and w11(0) are given by the horizontal and vertical
axes, respectively. The other initial values are y1(0) = x(0) =
0.3 and v1

111(0) = v1
11(0) = v1

11
′(0) = v1

1(0) = 0. Grid points
are plotted as black dots for initial conditions from which
learning ends in success. Otherwise, points are left blank. As a
result, initial weights with success for the period-three learning
[Fig. 3(b)] are wholly riddled with white holes, in contrast to
those for the period-two learning [Fig. 3(a)]. However, even
for the period-two learning [Fig. 3(a)], there is also a region
having fine structure where initial weights with success and

2In general, it is impossible to conclude, by the numerical observation of
a learning process of finite-length, that the learning ends in failure, because
there is a possibility of success if one looks further ahead of that process.
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Fig. 3. Initial weights with success, plotted as black dots, for (a) the period-
two learning, and (b) the period-three learning.

those with failure are complicatedly interwoven. This implies
sensitivity to initial conditions.

To rigorously investigate the robustness of the learning
process against unavoidable perturbations (noise, measurement
errors, etc.), we focus on the basin boundary between two
sets of initial weights with different fates (i.e, success or not),
and examine the ε-dependence of V (ε), i.e., the 4-dimensional
volume of the ε-neighborhood of the boundary in the 4-
dimensional initial weight space. This V (ε) is proportional
to the probability of making a mistake in the determination of
final fate, if we were to pick an initial weight at random in a
bounded region containing the boundary, and if our ability to
determine the position of the initial weight had an uncertainty
ε. Figure 4 shows results of numerical experiments for the
period-two and period-three learning, where V (ε) is plotted
versus ε with a logarithmic scale. In each case, we evaluate
V (ε) of the region −5 ≤ w∗(0) ≤ 5. The other settings are

102

103

104

10-15 10-10 10-5 1

V
(ε

)

ε

a=3.3
a=3.835

Fig. 4. V (ε) versus ε for the period-two learning (a = 3.3) and the period-
three learning (a = 3.835) (log-log plot).

the same as the previous basin’s case. As a result, V (ε) does
not depend on ε, regardless of the period-two or period-three
learning. This indicates another dynamical singularity of the
learning system, i.e., the inaccessibility of the ideal learning
process [8], which we now move on to explain.

The learning process is determined by dynamical equations.
Thus, even if perturbations of amplitude ε are added, it is
naturally expected that V (ε) can be decreased by decreasing
ε. In other words, the more one improves accuracy, the better
one can follow the true learning process under an ideal
condition without perturbations. Indeed, for a fractal boundary
in general, V (ε) scales with ε as V (ε) ∼ εφ with 0 < φ < 1
[7], and thus V (ε) can be decreased to 0 with a power law.
On the other hand, in this special case where V (ε) does
not depend on ε (i.e., φ = 0), the ideal learning process
cannot be approached by decreasing ε, as long as there exist
perturbations regardless of how small they are. In this sense,
the above result shows the inaccessibility of the ideal learning
process.

The following should be noted: First, this notion of un-
certainty — inaccessibility — is qualitatively different from
chaotic unpredictability, which will disappear as accuracy is
improved. Second, the above φ is called an uncertainty expo-
nent [7], and the box-counting dimension of the boundary, D0,
is given by D0 = N −φ where N is the space dimensionality.
As mentioned previously, φ > 0 for ordinary fractal sets, e.g.,
those constructed by transient chaos. On the other hand, fractal
sets having φ = 0 are so extraordinary that this class contains
the Mandelbrot set and geometric representation of the halting
set of a universal Turing machine [9].

The inaccessibility of ideal learning process is widely ob-
served in learning systems, e.g., for other choices of learning
rate, periodic time series, the initial value of the network state,
the initial value of the logistic map, etc. From the viewpoint
of dynamical systems, an extraordinary basin boundary having
φ = 0 is based on singular dynamics such as that exemplified
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Fig. 5. Distributions of learning times for the period-two learning (a = 3.3),
the period-three learning (a = 3.835), and the period-three learning with a
larger learning rate (a = 3.835, ε = 0.5) (log-log plot).

in Fig. 2, where the finite-time Lyapunov exponent irregularly
fluctuates around 0.

C. Distribution of Learning Times

Now we turn our focus to the construction process of
such fractal basins. In particular, we study the distribution
of learning times (transient times). Figure 5 shows learning
time distribution of the period-two and period-three learning
with a = 3.3 and a = 3.835, respectively. (We later refer to
the case with a = 3.835 and ε = 0.5, also shown there.) In
each case, initial weights are uniformly chosen from the region
−5 ≤ w∗(0) ≤ 5. The other settings are the same as before. As
a result, in the case of the period-two learning, a fraction of the
initial points from which learning ends in success with learning
time τ , denoted as p(τ), is found to decay according to a
power law. This “slow” decay is in strong contrast with “fast”
decay observed in transient chaos. In general, the distribution
of transient times decays exponentially for transient chaos
(i.e., the construction process of ordinary fractals) [7]. In the
case of the period-three learning, however, we cannot observe
any particular decay tendency until the time limit (106 time
steps) imposed by current computational cost. Nevertheless,
we expect power-law decay also in this case, if one looks
further ahead over the time limit. Indeed, another period-three
learning, denoted by a = 3.835 and ε = 0.5 in Fig. 5, shows
power-law decay, where the only difference from the period-
three learning studied so far is a larger learning rate (ε = 0.5),
for the purpose of speed-up.

This singular behavior, the power-law decay of transient
time distributions, is typically observed for other learning sys-
tems with variously different conditions. From the viewpoint
of dynamical systems, singular dynamics such as those having
finite-time Lyapunov exponents around 0 underlie the slow
decay of these transient time distributions.

V. LINEAR STABILITY ANALYSIS

So far we have seen the global properties of the learning
system where g in Eq. (5) is the logistic map. In this section,
we demonstrate a local property of the general learning system
represented by Eq. (5), by using linear stability analysis.
We can prove the following fact for the Jacobian matrix of
Eq. (5). We give the fact without a proof, but the details are
mechanical.

Fact 1: The Jacobian matrix of the learning system
[Eq. (5)] has eigenvalue unity at all points in phase space,
except for points where the Jacobian matrix is not defined.

As stated in the previous section, we have observed, in var-
ious learning systems, singular behaviors (neutral behaviors)
different from ordinary chaos, such as that exemplified by zero
finite-time Lyapunov exponents. One of the basic reasons for
these singularities is that the learning system is represented by
such a singular map whose Jacobian matrix has the eigenvalue
unity in the whole phase space. Furthermore, the local charac-
teristic stated in Fact 1 can be proven to hold true also for other
learning systems with different neuron models [e.g., a first-
order model such as y1(t+1) = f(w11x(t)+w′

11y1(t)+w1)]
and different update schemes [e.g., updating w∗(t) based on
the gradient of E(t) = 1

2 [y1(t) − x(t)]2, instead of E(t+1)].
3

VI. SUMMARY AND DISCUSSION

In this paper, we have both numerically and theoretically
demonstrated various dynamical singularities of a simple
learning system in which a RNN learns a time series generated
by a one-dimensional map with the RTRL algorithm. In par-
ticular, we have numerically shown “neutral behaviors” such
as almost zero finite-time Lyapunov exponents, inaccessibility,
and power-law decay of the distribution of learning times
(transient times), in contrast with ordinary chaos. These char-
acteristics have been widely observed in other learning systems
having different network structures (e.g., the number of units
n > 1), different learning algorithms (e.g., extended Kalman
filtering algorithm [4]), and different tasks (e.g., the case in
which RNNs learn each other). Furthermore, we have shown
that a basic reason for these singularities is that the learning
system is represented by a singular map whose Jacobian matrix
is proven to have eigenvalue unity in the whole phase space.
This characteristic also holds true for certain other learning
systems.

On the basis of the above results, we conjecture that unique
dynamical singularities such as those reported here will be
common in systems capable of adaptation or learning. Indeed,
a study similar to the present one can be made for adaptive
delayed-feedback control [10]. Further clarification of such
universality will be needed to understand the highly dynamic
and complex phenomena observed in biological systems such
as the brain.

3We believe that the same local characteristic will hold true for networks
with more than one neuron of the above types, although proving this will
require future study.
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