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ABSTRACT

Physical Layer Security Performance Study for Wireless Networks with Cooperative
Jamming

by

Yuanyu Zhang

Due to the rapid development of wireless communication technology and widespread

proliferation of wireless user equipment, wireless networks become indispensable for

lots of applications in daily life. The broadcast nature of wireless medium makes

information exchange in such networks vulnerable to eavesdropping attacks from ma-

licious eavesdroppers, resulting in network security one of the major concerns for

system designers. Physical layer (PHY) security has been proposed as one promising

technology to provide security guarantee for wireless communications, owing to its

unique advantages over traditional cryptography-based mechanisms, like an everlast-

ing security guarantee and no need for costly secret key distribution/management and

complex encryption algorithms. This thesis therefore focuses on the PHY security

performance study for wireless networks with cooperative jamming (a typical PHY

security technique), where non-transmitting helper nodes generate jamming signals

to counteract eavesdropping attacks.

We first explore the PHY security performances of small-scale wireless networks

with non-colluding (i.e., independently-operating) eavesdroppers, for which we study
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the eavesdropper-tolerance capability (ETC) of a two-hop wireless network with one

source-destination pair, multiple relays and multiple non-colluding eavesdroppers.

We consider two relay selection schemes to forward the packets from the source to

the destination, i.e., random relaying and opportunistic relaying. For both relaying

schemes, we first derive the secrecy outage probability (SOP) and transmission outage

probability (TOP) of the network by applying the classical Probability Theory. We

then determine the ETC of the network by solving an optimization problem that aims

to maximize the number of eavesdroppers that can be tolerated under a certain SOP

constraint and a certain TOP constraint. Finally, we present extensive simulation

and numerical results to demonstrate the validity of the theoretical analysis and also

to illustrate our theoretical findings.

We then investigate the PHY security performances of small-scale wireless net-

works with colluding (i.e., cooperatively-operating) eavesdroppers, for which we study

the SOP performance of a two-hop wireless network with one source-destination pair,

multiple relays and multiple colluding eavesdroppers. Based on the classical Prob-

ability Theory, we first conduct analysis on the SOP of the simple non-colluding

case. For the SOP analysis of the more hazardous M-colluding scenario, where any

M eavesdroppers can combine their observations to decode the message, the tech-

niques of Laplace transform, keyhole contour integral, and Cauchy Integral Theorem

are jointly adopted to work around the highly cumbersome multifold convolution

problem involved in such analysis, such that the related signal-to-interference ratio

modeling for all colluding eavesdroppers can be conducted and thus the correspond-

ing SOP can be analytically determined. Finally, simulation and numerical results

are provided to demonstrate the validity of the theoretical analysis also to illustrate

our theoretical findings.

Finally, we examine the cooperative jamming design issue in large-scale wireless

networks. Towards this end, we propose a friendship-based cooperative jamming
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scheme to ensure secure communications in a finite Poisson network with one source-

destination pair, multiple legitimate nodes and multiple eavesdroppers distributed

according to two independent and homogeneous Poisson Point Processes (PPP), re-

spectively. The jamming scheme consists of a Local Friendship Circle (LFC) and a

Long-range Friendship Annulus (LFA), where all legitimate nodes in the LFC serve as

jammers, but the legitimate nodes in the LFA are selected as jammers through three

location-based policies. To understand both the security and reliability performances

of the proposed jamming scheme, we first model the sum interference at any location

in the network by deriving its Laplace transform under two typical path loss scenarios.

With the help of the interference Laplace transform results, we then derive the exact

expression for the TOP and determine both the upper and lower bounds on the SOP,

such that the overall outage performances of the proposed jamming scheme can be

depicted. Finally, we present extensive numerical results to validate the theoretical

analysis of TOP and SOP and also to illustrate the impacts of the friendship-based

cooperative jamming on the network performances.
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CHAPTER I

Introduction

In this chapter, we first introduce the background of physical layer security and

then we present the objective and main works of this thesis. Finally, we give the

outline and main notations of this thesis.

1.1 Physical Layer Security

With the rapid development of wireless communication technology and the prolif-

eration of wireless user equipment such as smart phones, PDAs, laptops, etc., wireless

networks such as the global cellular networks, satellite communications and wireless

local area networks, become indispensable for lots of applications in our daily life

[1–3]. Due to the broadcast nature of wireless medium, information exchange over

wireless channels is vulnerable to eavesdropping attacks from malicious nodes (i.e.,

eavesdroppers). As a result, security against the eavesdropping attacks becomes one

of the key issues in the design of wireless networks [4–6].

Traditional solutions to protect wireless information transfer from eavesdropping

attacks are mainly based on cryptography, which encrypts information with secret

keys through various kinds of cryptographic protocols, e.g., the Data Encryption

Standard (DES) and RSA algorithm [7]. In cryptography, eavesdroppers are assumed

to have limited computing power, such that even if they capture the encrypted infor-
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mation, they cannot decrypt it without the secret keys. However, as the computing

power of eavesdroppers advances rapidly nowadays, these solutions are facing increas-

ingly high risk of being broken by the relentless brute-force attacks of eavesdroppers

[8, 9]. In addition, the lack of centralized control makes the secret key management

and distribution in wireless networks, especially in decentralized wireless networks,

very costly and complex to be implemented. This necessitates the introduction of

more powerful approaches to ensure wireless network security. Physical layer (PHY)

security has been recognized as one of these approaches to provide a strong form of

security guarantee for wireless networks [10]. The basic principle of PHY security

is to exploit the inherent randomness of noise and wireless channels to ensure the

confidentiality of information against any eavesdropper regardless of its computing

power [11]. Compared to the cryptography-based solutions, PHY security can offer

some unique advantages, like an everlasting security guarantee, no need for costly se-

cret key management/distribution and complex cryptographic protocols, and a high

scalability for the next-generation wireless communications [12].

The first work regarding PHY security goes back to Wyner’s paper [13], which

introduced the noisy wiretap channel model. In this model, a legitimate transmitter

wishes to communicate securely with a legitimate receiver over a noisy main chan-

nel, which is wiretapped by an eavesdropper through another noisy channel, called

eavesdropper channel. Wyner’s results revealed that a non-zero secrecy rate can be

achieved without using any secret keys between the legitimate transmission pair if

the eavesdropper channel is a degraded version of the main channel. Csiszár and

Körner generalized Wyner’s results to a general wiretap channel where the eaves-

dropper channel is not necessarily degraded with respect to the main channel [14].

Their results showed that a non-zero secrecy rate is still achievable when the eaves-

dropper channel is not degraded, by using the technique of channel prefix to inject

additional randomness into both the main and eavesdropper channels such that a rel-
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atively better main channel over the eavesdropper channel can be created. Stimulated

by the above observations, extensive research efforts have been devoted to develop-

ing PHY security techniques based on the idea of changing the randomness of both

the main and eavesdroppers channels so as to yield a channel advantage for the main

channel [15, 16]. These techniques mainly includes cooperative jamming [17–20], relay

selection [21–24] and beamforming/precoding [25–28].

Cooperative jamming allows non-transmitting helper nodes to send jamming sig-

nals to improve the security of a given transmitter-receiver pair. The jamming signal

can be Gaussian noise independent of the intended information signal, which will

cause interference to both the intended receiver and the eavesdropper and probabilis-

tically yield a net channel gain for the intended receiver [17]. The jamming signal

can also be some codeword with a certain structure that can be eliminated only at

the legitimate receiver side [19]. Cooperative jamming with Gaussian noise is easy

to implement and requires no channel state information (CSI) about the eavesdrop-

per channel, but it could also hurt the main channel. Cooperative jamming with

structured codeword can certainly improve the security, but it usually needs a com-

plex design of the codeword and relies heavily on the CSI of eavesdropper channels,

which is usually impossible in practice, especially for passive eavesdroppers that only

overhear information without sending any signal in order to conceal themselves.

The basic idea of relay selection is to enlarge the channel advantage of the main

channel over the eavesdropper channel by selecting a relay that can construct a strong

main link but a weak eavesdropper link. Relay selection can be roughly classified

into two categories depending on whether the buffers of relays are involved, i.e.,

normal relay selection [21, 22] and buffer-aided relay selection [23, 24]. Normal relay

selection usually selects a best relay from all available relays by utilizing the diversity

gain offered by multiple relays. Once the relay is selected, the transmission must

be conducted in a prefixed manner (e.g., source-relay-destination manner for a two-
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hop transmission), even if the channel quality of current transmission is relatively

poor. To address this limitation, buffer-aided relay selection utilizes the diversity gain

offered by buffers of relays to selects a best link from all available links as the current

transmission, which certainly improves the security. Relay selection will not do harm

to the main channel, but it usually also requires the knowledge of eavesdropper CSI.

Besides, the frequent message exchange in the process of relay selection might incur

a relatively high overhead to the network.

The technique of beamforming/precoding is based on multi-antenna signal pro-

cessing. Beamforming refers to transmitting one date stream through multiple an-

tennas, while precoding refers to transmitting multiple data streams simultaneously

over multiple antennas. This technique controls the direction and strength of sig-

nals such that the signal is radiated towards the direction of the intended receiver,

while receivers in other directions can hardly receive the signal. The effect of beam-

forming/precoding in improving the security is obvious, but it usually requires high

coordination (e.g., synchronization) among the nodes involved and high computation

overhead to choose the weight of each antenna, which makes it relatively complex

to be implemented. Besides, this technique also requires the perfect knowledge of

eavesdropper CSI.

Notice that the above techniques focus on changing the channel randomness to

ensure the PHY security, while there are also techniques that focus on exploiting

rather than changing the inherent randomness of wireless channels. A good example

of such kind of techniques is coding [29–31]. Borrowing the idea from stochastic

encoding, the coding technique associates each confidential message with multiple

protection messages carrying no information. To transmit a confidential message,

the encoder will randomly choose a protection message and encode the confidential

message and the protection message together into a single codeword. Assuming the

eavesdropper channel is worse than the main channel, such protection message is
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designed detrimental enough to interfere with the eavesdropper, but still ensuring the

resolvability of the confidential message at the intended receiver. This technique can

effectively translate the channel advantage of the main channel into a secrecy rate of

the confidential message, but the main challenge is how to construct the codebooks.

Similar to the majority of the above techniques, coding also requires the knowledge

of eavesdropper CSI.

1.2 Objective and Main Works

This thesis adopts the cooperative jamming with Gaussian noise to ensure the

security of wireless communications, considering its possibility of being implemented

in practice without knowing the CSI of eavesdroppers. Our objective is to fully

explore the PHY security performances of wireless networks with cooperative jam-

ming. Towards this end, we first study the PHY security performances of small-scale

wireless networks with non-colluding eavesdroppers that intercept information inde-

pendently based on their own signal. We then investigate the PHY security perfor-

mances of small-scale wireless networks with colluding eavesdroppers that can ex-

change and combine their signals to cooperatively intercept information. Finally, we

examine the cooperative jamming design issue in large-scale wireless networks. Three

commonly-used PHY security performance metrics are of particular interest, which

are eavesdropper-tolerance capability (ETC) [32], secrecy outage probability (SOP) and

transmission outage probability (TOP) [33]. ETC characterizes the maximum num-

ber of eavesdroppers that can be tolerated by a wireless network. SOP defines the

probability that the message from a transmitter is successfully intercepted by eaves-

droppers. TOP defines the probability that the intended receiver fails to successfully

decode the message from the transmitter. The main works and contributions of this

thesis are summarized in the following subsections.
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1.2.1 PHY Security Performance Study of Small-Scale Wireless Net-

works with Non-Colluding Eavesdroppers

This work focuses on the ETC study of two-hop wireless networks with non-

colluding eavesdroppers. While existing works [32, 34–36] regarding the ETC study

of two-hop wireless networks mainly derived either lower bounds or scaling law results

that depict how the ETC scales up as the network size tends to infinity (Please refer

to Section 2.1 for related works), the exact ETC of such networks remains largely

unexplored. In this work, as a first step towards the study of actual ETC in more

general wireless networks, we study the exact ETC of a two-hop wireless network with

one source-destination pair, multiple relays and multiple non-colluding eavesdroppers.

We consider two relay selection schemes (i.e., random relaying and opportunistic

relaying) to forward packets from the source node to the destination node. The main

contributions of this work can be summarized as follows:

• We first apply the tools from Probability Theory (e.g., Central Limit Theorem)

to develop theoretical models for both the SOP and TOP analysis of the source-

destination transmission under both the random relaying and opportunistic

relaying schemes.

• We then formulate the ETC problem as an optimization problem that aims to

maximize the number of eavesdroppers that can be tolerated under a certain

SOP constraint and a certain TOP constraint. Based on the Stochastic Ordering

Theory, we then conduct analysis to reveal the monotonicity properties of the

SOP and TOP, based on which we solve the optimization problem and determine

the ETC of the concerned network.

• Extensive simulation results are presented to validate the efficiency of our the-

oretical framework and numerical results are also provided to illustrate the

ETC of the concerned network with cooperative jamming under both relaying
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schemes.

1.2.2 PHY Security Performance Study of Small-Scale Wireless Net-

works with Colluding Eavesdroppers

Extensive research efforts have been devoted to exploring the PHY security per-

formances of wireless networks with colluding eavesdroppers in terms of the scaling

laws of secrecy capacity and ETC, secure connection probability, etc. [37–48] (Please

refer to Section 2.2 for related works). These works indicated that eavesdropper col-

lusion represents a more hazardous threat to the security of wireless networks, which

can greatly improve the eavesdroppers’ capability of intercepting information. De-

spite the extensive research efforts as mentioned above, the analysis of secrecy outage

performance of wireless network with colluding eavesdroppers remains a technique

challenge. This is mainly due to that such secrecy outage analysis usually involves

highly cumbersome multi-fold convolutions related to the modeling of the probability

density function (pdf)/cumulative distribution function (cdf) of the aggregate Signal-

to-Interference Ratio (SIR) of all colluding eavesdroppers. This work aims to tackle

this challenge and focuses on the SOP study of a two-hop wireless network with one

source-destination pair, multiple relays and multiple colluding eavesdroppers. We

consider two eavesdropping cases, i.e., non-colluding case and M-colluding case where

any M eavesdroppers can combine their observations to decode the message. The

main contributions of this work are summarized as follows:

• Based on the classical Probability Theory, we first derive the SOP for the simple

non-colluding case, where each eavesdropper works independently and decodes

the message solely based on its own observation.

• For the secrecy outage analysis of the more hazardous M-colluding scenario, the

techniques of Laplace transform, keyhole contour integral and Cauchy Integral
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Theorem are jointly adopted to work around the highly cumbersome multi-fold

convolution involved in such analysis, such that the related SIR modeling for

all colluding eavesdroppers can be conducted and thus the corresponding SOP

can be analytically determined.

• Finally, we provide simulation and numerical results to validate our theoretical

analysis and also to illustrate our theoretical findings.

1.2.3 Cooperative Jamming Design in Large-Scale Wireless Networks

Due to the rapid proliferation of smart phones, tablets and PDAs, hand-held de-

vices have been an essential integral part of wireless networks. As these devices are

usually carried by human beings, wireless networks, such as mobile ad hoc networks

[49], cellular networks [50] and delay-tolerant networks [51], exhibit some social be-

haviors (e.g., friendship, social trust) nowadays. The potentials of social relationships

among network nodes in improving the quality of many important data communica-

tion services (e.g., content distribution, data sharing and data dissemination) has

been extensively examined (see [52] and references therein). Motivated by this, some

recent efforts have been devoted to the cooperative jamming design with the consid-

eration of social relationships among networks [53, 54] (Please refer to Section 2.3 for

related works).

While the above works represent a significant process in the study of PHY security-

based secure communication in wireless networks with social relationships, the social

relationships they considered are simply modeled by an indicator variable. Although

these variables are acceptable for characterizing some location-independent social re-

lationships, like social tie and social trust, they may fail to model some important

social properties closely related to geometric properties of networks, e.g., small-world

phenomenon [55, 56]. Also, the network scenarios they considered are quite simple,

which consists of either only one eavesdropper and several jammers or only two clus-
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ters of jammers. To the best of our knowledge, the study of PHY security-based

secure communication in more general large scale wireless networks with small-world

social relationships still remains unknown, which is the scope of this work.

We consider a finite large-scale Poisson network consisting of one source-destination

pair, multiple legitimate nodes and multiple eavesdroppers distributed according to

two independent and homogeneous Poisson Point Processes (PPP), respectively. A

more realistic location-based friendship model is adopted to depict the social relation-

ships among network nodes. The cooperative jamming design in this work takes such

friendship into consideration and exploits the fact that only legitimate nodes that are

friends of the source are willing to serve as jammers. The main contributions of this

work are summarized as follows:

• This paper proposes a friendship-based cooperative jamming scheme to ensure

the PHY security-based secure communication between the transmitter and re-

ceiver. The jamming scheme comprises a Local Friendship Circle (LFC) and a

Long-range Friendship Annulus (LFA), where all legitimate nodes in the LFC

serve as jammers, and three location-based policies are designed to select legit-

imate nodes in the LFA as jammers.

• The TOP and SOP are adopted to model the reliability and security perfor-

mance of the proposed jamming scheme. For the modeling of these performance

metrics, we first conduct analysis on the sum interference at any location in the

network by deriving its Laplace transforms under the three jammer selection

policies and two typical path loss scenarios [1]. With the help of the interference

Laplace transform results, we then derive the exact expression for the TOP and

determine both the upper and lower bounds on the SOP, such that the overall

outage performances of the proposed jamming scheme can be fully depicted.

• Finally, we present extensive numerical results to validate the theoretical anal-
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ysis of TOP and SOP and also to illustrate the impacts of the friendship-based

cooperative jamming on the network performance.

1.3 Thesis Outline

The remainder of this thesis is outlined as follows. Chapter II introduces the

related works of this thesis. In Chapter III, we introduce our work regarding PHY

security performance study of small-scale wireless networks with non-colluding eaves-

droppers. Chapter IV presents the work on PHY security performance study of small-

scale wireless networks with colluding eavesdroppers and Chapter V introduces the

work regarding cooperative jamming design in large-scale wireless networks. Finally,

we conclude this thesis in Chapter VI.

1.4 Notations

The main notations of this thesis are summarized in Table 1.1.

Table 1.1: Main notations

Symbol Definition

S source node

D destination node

n number of relays

m number of eavesdroppers

M eavesdropper intensity

Ri the i-th relay

Rr selected message relay for random relaying

Rb selected message relay for opportunistic relaying

Ej the j-th eavesdropper
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|hi,j|2 channel gain between nodes i and j

E[·] expectation operator

P[·] probability operator

Pt common transmit power of source and relay nodes

J jammer set

τ noise-generating threshold

SIRi,j signal-to-interference ratio (SIR) from node i to node j

SIRagg aggregate SIR of colluding eavesdroppers

SIRx SIR at location x of a network

γ minimum required decoding SIR for legitimate nodes

γe minimum required decoding SIR for eavesdroppers

Pto transmission outage probability (TOP)

P ran
to TOP for random relaying

P opp
to TOP for opportunistic relaying

Pso secrecy outage probability (SOP)

P c
so SOP for colluding scenario

P nc
so SOP for non-colluding scenario

I(x) interference at node x

εt TOP constraint

εs SOP constraint

Mran eavesdropper-tolerance capability of random relaying

Mopp eavesdropper-tolerance capability of opportunistic relaying

Lf (·) Laplace transform of function f

B(o,D) two-dimensional finite Poisson Network with radius D

l distance of source-destination pair

α path-loss exponent
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Φ Poisson Point Process (PPP) of legitimate nodes

ΦE PPP of eavesdroppers

ΦJ PPP of jammers

λ density of legitimate nodes

λE density of eavesdroppers

A1 local friendship circle (LFC)

A2 long-range friendship annulus (LFA)

R1 radius of LFC (inner radius of LFA)

R2 outer radius of LFA

P(·) location-based jammer selection policy

Λ(·) intensity measure of PPP
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CHAPTER II

Related Work

This section introduces the existing works related to our study in this thesis,

including the works on the ETC study of wireless networks, the works on the PHY

security performance study of wireless networks under eavesdropper collusion and the

works on the cooperative jamming schemes with social relationships.

2.1 ETC Study of Two-Hop Wireless Networks

Some recent works have been done on the ETC study of wireless networks. These

works can be classified into two categories according to the network size. For net-

works with infinite size or infinite number of nodes, the scaling law of ETC against the

per-node throughput was studied in [32] by constructing a highway system. Goeckel

et al. [34] considered a two-hop relay wireless network with one source-destination

pair, multiple relays and eavesdroppers and derived the scaling law of ETC. Sheik-

holeslami et al. [35] then extended this result to a wireless network with multiple

source-destination pairs where cooperative jamming signals are generated from con-

current transmitters. For finite networks, Shen et al. showed the exact lower bound

on the ETC of a two-hop relay wireless network [36]. It is noticed that all the above

works have focused on either the order-sense scaling law results for infinite networks,

or bounds for finite networks. Such order sense results or bounds are certainly im-
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portant but cannot reflect the the actual ETC of more practical network scenarios

with finite nodes and finite size, which is more important for the system designers.

However, to the best of our knowledge, the exact result of ETC has been unexplored

yet, mainly due to the challenges posed by modeling the spatial correlation of the

signal-to-interference-plus-noise ratio (SINR) in multiple hops and the complexity in

determining the distribution of interference.

2.2 PHY Security Performance Study of Wireless Networks

with Colluding eavesdroppers

The security performance study of wireless communications under eavesdropper

collusion and physical layer security can be classified into two categories, depending

on the considered network scenario.

For two-hop wireless networks, the secure connection probability, i.e., the prob-

ability that the secrecy rates in two hops are both positive, was investigated in [37]

to study when a relay is needed to establish a more secure connection. The au-

thors in [38] proposed novel relay strategies to neutralize information leakage from

each user to the colluding eavesdroppers by choosing the forwarding matrix of an

amplify-and-forward relay in a multi-antenna non-regenerative relay-assisted multi-

carrier interference channel. For a multiuser peer-to-peer (MUP2P) relay network

with multiple source-destination pairs, multiple relays and a colluding eavesdropper

with multiple antennas, the authors in [39] optimized the transmit power of the source

and the beamforming weights of the relays jointly to maximize the secrecy rate sub-

ject to the minimum signal-to-interference-noise-ratio constraint at each user and the

individual and total power constraints. In [40], Vasudevan et al. considered a very

similar system model with opportunistic relaying and cooperative jamming schemes

as in this thesis, whereas they focused on the scaling law of ETC.
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For other wireless networks, the scaling law of secrecy capacity was examined

for large-scale networks in [41, 42] as network size tends to infinity. The secrecy-

constrained connectivity property of large multi-hop wireless networks with colluding

eavesdroppers was considered in [43]. The problem of finding a secure minimum en-

ergy routing path of K hops between two nodes in an arbitrary wireless network was

considered in [44], subject to constraints on the end-to-end successful eavesdropping

probability and throughput over the path. The security scheme design issue and the

related optimization problem under eavesdropper collusion also attracted consider-

able attention for various network scenarios [45, 46]. The SOP i.e., the probability

that instantaneous secrecy rate between a transmitter-receiver pair is below some

threshold, was investigated for various stochastic networks [47, 48].

2.3 Cooperative Jamming Scheme with Social Relationships

Some recent efforts have been devoted to the study of PHY security-based se-

cure communication in wireless networks with social relationships. Wang et al. [53]

considered a D2D communication scenario, where the head of two D2D user (DUE)

clusters wish to communicate with the help of an intermediate Decode-and-Forward

relay. The communication security is guaranteed by the cooperative jamming scheme,

where multiple friendly jammers send jamming signals to suppress eavesdroppers, and

the social relationship is modeled by a social trust parameter µ ∈ [0, 1]. Two sets of

jammers are selected from DUEs with social trust above some threshold µmin. With

the consideration of power constraint, the authors studied the optimal selection of

relay and jammers to maximize the secrecy rate of DUE transmission and also to

ensure a required SINR level to cellular users. Tang et al. [54] considered a wireless

network consisting of one source-destination pair, a set of cooperative jammers and

one eavesdropper. Cooperative jamming is adopted to ensure the security and the

concept of social tie is introduced to model the social relationship between jammers
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and the source/destination. The strength of social tie of the n-th jammer is denoted

by an ∈ {0, 1}, where 1 (0) indicates that the jammer is (is not) willing to participate

in the cooperative jamming. The authors modeled the decision problem of jammers

as a social tie-based cooperative jamming game and then explored the secrecy outage

performance of the source-destination pair by computing the Nash equilibrium of the

game.
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CHAPTER III

Physical Layer Security Performance Study of

Small-Scale Wireless Networks with

Non-Colluding Eavesdroppers

This chapter focuses on the PHY security performance study of small-scale wire-

less network with non-colluding eavesdroppers, for which we study the eavesdropper-

tolerance capability (ETC) of a two-hop wireless network with non-colluding eaves-

droppers. We consider two relaying schemes, i.e., the random relaying which ran-

domly selects a relay from the available relays and the opportunistic relaying which

selects the best relay based on the link conditions of each relay. For both relaying

schemes, we first theoretically analyze the performances of secrecy outage probability

(SOP) and transmission outage probability (TOP), based on which we further explore

the ETC of the network with both relaying schemes under the constraints of both

SOP and TOP. Finally, simulation and numerical results are provided to validate our

theoretical analysis and also to illustrate our theoretical findings.
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Figure 3.1: System scenario: a source S is transmitting messages to a destination
D with the help of relays R1, R2, · · · , Rn (n = 6 in this figure) while eavesdroppers
E1, E2, · · · , Em (m = 5 in this figure) are attempting to intercept the messages. In
this figure, R4 is the message relay and R2, R5 are jammers.

3.1 System Model

3.1.1 Network Model

As depicted in Figure 3.1, we consider a two-hop wireless network consisting of a

source node S, a destination node D, n legitimate half-duplex relays R1, R2, · · · , Rn

that cannot transmit and receive at the same time and m passive eavesdroppers

E1, E2, · · · , Em of unknown channel information. The eavesdroppers are assumed

non-colluding such that they intercept information solely based on their own received

signal. We assume that the direct link between S and D does not exist due to deep

fading and thus S needs to transmit messages to D via one of the relays. Meanwhile,

some of the remaining n − 1 relays will be selected as jammers to generate random

Gaussian noise to suppress the eavesdroppers during the transmission. We aim to

ensure both secure and reliable transmissions from S to D against the eavesdroppers.

Time is slotted and a slow, flat, block Rayleigh fading environment is assumed,

where the channel remains static for one time slot and varies randomly and inde-

pendently from slot to slot. The channel coefficient from a transmitter A to a re-

ceiver B is modeled by a complex zero-mean Gaussian random variable hA,B and
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thus |hA,B|2 is an exponential random variable. We assume that |hA,B|2 = |hB,A|2 and

E
[
|hA,B|2

]
= 1, where E

[
·
]
stands for the expectation operator. All channel gains

|hS,Ri
|2, |hRi,D|2, |hS,Ej

|2, |hRi,Ej
|2 and |hRi,Rk

|2 for i ∈ [1, n], k ∈ [1, n], k ̸= i and

j ∈ [1,m] are assumed independent and identically distributed (i.i.d.). It is assumed

that the source S and the relays transmit with the same power Pt. In addition, we

assume that the network is interference-limited and thus the noise at each receiver is

negligible.

3.1.2 Relaying Schemes and Cooperative Jamming

To ensure the two-hop transmission between S and D, we consider the following

transmission protocol which involves both the relay selection and cooperative jamming

schemes:

1. Channel measurement: In this step, the source S first broadcasts a pilot

signal such that each relay can measure the channel coefficient from S to itself.

Similarly, the destination D broadcasts a pilot signal to allow each relay to

measure the channel coefficient from D to itself. We assume that each relay and

eavesdropper can exactly measure the channel coefficients from its observations.

Hence, each relay Ri, i = 1, 2, · · · , n exactly knows hS,Ri
and hRi,D, and each

eavesdropper Ej, j = 1, 2, · · · ,m exactly knows hS,Ej
and hD,Ej

.

2. Relay selection and declaration: A relay is selected from the n relays as the

message relay. We use i∗ to denote the index of the message relay. The relay Ri∗

then broadcasts a pilot signal to declare itself as the message relay. After this

step, each relay Ri, i = 1, 2, · · · , n, i ̸= i∗ and eavesdropper Ej, j = 1, 2, · · · ,m

exactly knows hRi,Ri∗ and hEj ,Ri∗ , respectively.

3. Message transmission from S to Ri∗: In this step, the source S transmits

a message to Ri∗ . At the same time, the cooperative jamming technique
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is adopted to ensure the security of this transmission. This technique allows

relays in the set J1 = {Ri ̸= Ri∗ : |hRi,Ri∗ |2 < τ} to generate random Gaussian

noise in order to suppress the eavesdroppers, where τ is the noise-generating

threshold.

4. Message transmission from Ri∗ to D: In this step, the message relay Ri∗

sends the message to the destination D. Cooperative jamming is also used in

this step and relays in the set J2 = {Ri ̸= Ri∗ : |hRi,D|2 < τ} generate random

Gaussian noise to assist the message transmission.

In Step 2, we consider two relay selection schemes. The first one is the random

relaying, which randomly selects a relay from R1, R2, · · · , n as the message relay.

We use Rr to denote the message relay selected by this scheme. The second one is

the opportunistic relaying, which selects a best relay from R1, R2, · · · , Rn that

maximizes the minimum of the source-relay channel gain and relay-destination chan-

nel gain (i.e., min{|hS,Ri
|2, |hRi,D|2}. We use Rb to denote the relay selected by the

opportunistic relaying scheme and

b
∆
= argmax

i∈[1,n]
min{|hS,Ri

|2, |hRi,D|2}.

Remark 1 It is notable that the above relay selection requires only the channel state

information (CSI) of legitimate channels, which can be estimated by the pilot signals

(e.g., ready-to-send (RTS) packet from the source, clear-to-send (CTS) packet from

the destination) in practice [57].

Suppose that the source S is sending signal x to the message relay Ri∗ during

some slot. At the same time, the relay Ri in the set J1 is sending jamming signal xi.
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The received signal at the message relay is then given by

yRi∗ =
√
PthS,Ri∗x+

∑
i∈J1

√
PthRi,Ri∗xi, (3.1)

and the received signal at the eavesdropper Ej, j = 1, 2, · · · ,m is given by

yEj
=
√
PthS,Ej

x+
∑
i∈J1

√
PthRi,Ej

xi, (3.2)

Hence, the received signal-to-interference ratio (SIR) at Ri∗ and at Ej in the first hop

can be given by

SIRS,Ri∗ =
|hS,Ri∗ |2∑

i∈J1
|hRi,Ri∗ |2

, SIRS,Ej
=

|hS,Ej
|2∑

i∈J1
|hRi,Ej

|2
. (3.3)

Similarly, suppose that the message relay Ri∗ is forwarding the received signal

x to the destination D in the second hop and the relay Ri in the set J2 is sending

jamming signal xi concurrently. The received signal at D is given by

yD =
√
PthRi∗ ,Dx+

∑
i∈J2

√
PthRi,Dxi, (3.4)

and the received signal at the eavesdropper Ej, j = 1, 2, · · · ,m is given by

yEj
=
√
PthRi∗ ,Ej

x+
∑
i∈J2

√
PthRi,Ej

xi, (3.5)

Hence, the received SIR at D and at Ej in the second hop can be given by

SIRRi∗ ,D =
|hRi∗ ,D|2∑
i∈J2

|hRi,D|2
, SIRRi∗ ,Ej

=
|hRi∗ ,Ej

|2∑
i∈J2

|hRi,Ej
|2
. (3.6)
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3.1.3 Problem Formulation

In this subsection, we first formulate the transmission outage probability and se-

crecy outage probability of the concerned network, based on which we then formulate

the ETC as an optimization problem.

In practice, a minimum SIR is usually required for receivers to correctly decode

the received signal. We define γ the minimum required SIR for legitimate nodes

and γe that for eavesdroppers. Consider the transmission in a single hop (e.g., the

first hop). We say that transmission outage in this hop happens if the message relay

cannot correctly decode the message (i.e., SIRS,Ri∗ < γ) and secrecy outage happens

if at least one of the eavesdroppers (say Ej) can correctly decode the message (i.e.,

SIRS,Ej
≥ γe). Generalizing these two outages to the case of two-hop transmission

from S to D, we say that transmission (secrecy) outage for the two-hop transmission

occurs if the transmission in either hop suffers from transmission (secrecy) outage.

Thus, the transmission outage probability (TOP) for the two-hop transmission

is thus defined as the probability that the transmission from S to D suffers from

transmission outage and can be formulated as

Pto = P (SIRS,Ri∗ < γ or SIRRi∗ ,D < γ) , (3.7)

where P(·) represents the probability operator. The secrecy outage probability

(SOP) is defined as the probability that the transmission from S to D suffers from

secrecy outage and can be formulated as

Pso = P

(
m∪
j=1

{
SIRS,Ej

≥ γe
}

or
m∪
j=1

{
SIRRi∗ ,Ej

≥ γe
})

. (3.8)

Since security and reliability are two important metrics in network design, we

use an SOP constraint εs and a TOP constraint εt to represent the security and
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reliability requirements of the two-hop transmission. We say that the transmission

from S to D is secure if and only if Pso ≤ εs and reliable if and only if Pto ≤ εt.

Based on the definitions of security and reliability, we define the eavesdropper-

tolerance capability (ETC) as the maximum number of eavesdroppers that can be

tolerated such that the transmission from S to D is both reliable and secure. From

the formulation of SOP and the security constraint, we can see that the maximum

number of eavesdroppers that can be tolerated under only the security constraint εs

is a function of the noise-generating threshold τ for a given n. We use M(τ) to denote

this function, which is given by

M(τ) = max{m : Pso(n,m, τ) ≤ εs}.

Taking the reliability constraint εt into consideration, we can now formulate the ETC

as the following optimization problem

maximize
τ

M(τ)

subject to Pto(n, τ) ≤ εt, τ ≥ 0

εt ∈ [0, 1], εs ∈ [0, 1].

(3.9)

The ETC can thus be determined as the maximum of M(τ).

3.2 Outage Performance Analysis

In this section, we theoretically analyze the TOP and SOP of the two-hop trans-

mission from S to D under both the random relaying and opportunistic relaying.
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3.2.1 TOP Analysis

We first derive the analytical expression for the TOP of the random relaying and

then given an accurate approximation to the TOP of the opportunistic relaying.

3.2.1.1 TOP for Random Relaying

The expression for the TOP of the random relaying is summarized in the following

theorem.

Theorem III.1 Consider the network scenario in Figure 3.1 with cooperative jam-

ming scheme. The TOP P ran
to under the random relaying scheme can be given by

P ran
to = 1−

(
e−τ +

1− e−(1+γ)τ

1 + γ

)2n−2

, (3.10)

where n is the number of relays, τ is the noise-generating threshold in cooperative

jamming and γ is the minimum required SIR for legitimate receivers to correctly

decode the source message.

Proof 1 Using the fact that SIRS,Rr and SIRRr,D are i.i.d., we can write the TOP in

(3.7) as

P ran
to = 1− P (SIRS,Rr ≥ γ)2 . (3.11)

Thus, we only focus on deriving P (SIRS,Rr ≥ γ), which is

P (SIRS,Rr ≥ γ) = P
(

|hS,Rr |2∑
i∈J1

|hRi,Rr |2
≥ γ

)
.

Since the message relay Rr is randomly selected from n relays, |hS,Rr |2 is exponentially

distributed with unit mean. Next, we consider the term
∑

i∈J1
|hRi,Rr |2 which is the

summation of random variables less than τ among n− 1 i.i.d. random variables. We
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first define a new random variable

U
(
|hRi,Rr |2

)
= 1

(
|hRi,Rr |2 < τ

)
· |hRi,Rr |2

for each Ri, where 1(·) is an indicator variable that equals 1 if |hRi,Rr |2 < τ and 0

otherwise. We then have

∑
i∈J1

|hRi,Rr |2 =
n∑

i=1,i̸=r

U(|hRi,Rr |2),

which becomes the summation of n−1 i.i.d. random variables. Notice that U(|hRi,Rr |2)

is a mixed random variable, and the distribution of its discrete part can be given by

P (U(|hRi,Rr |2) = 0) = e−τ and the distribution of its continuous part can be given by

fU>0(u) =

 0, u ≥ τ

e−u, 0 < u < τ
.

Now, we can derive the probability P (SIRS,Rr ≥ γ) as

P (SIRS,Rr ≥ γ) = E{U(|hRi,Rr |2)}

[
P

(
|hS,Rr |2 ≥ γ

(
n∑

i=1,i̸=r

U(|hRi,Rr |2)

))]
= E{U(|hRi,Rr |2)}

[
e−γ(

∑n
i=1,i̸=r U(|hRi,Rr |2))

]
= E{U(|hRi,Rr |2)}

[
n∏

i=1,i ̸=r

e−γU(|hRi,Rr |2)

]

=
n∏

i=1,i̸=r

EU(|hRi,Rr |2)

[
e−γU(|hRi,Rr |2)

]
=

n∏
i=1,i̸=r

(
1 · e−τ +

∫ τ

0

e−γufU>0(u)du

)

=

(
e−τ +

1− e−(1+γ)τ

1 + γ

)n−1

. (3.12)

Substituting (3.12) into (3.11) completes the proof.
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3.2.1.2 TOP for Opportunistic Relaying

Before determining the TOP for the opportunistic relaying, we first define the

total interference at the legitimate receiver in two phases by I(Rb) =
∑

i∈J1
|hRi,Rb

|2

and I(D) =
∑

i∈J2
|hRi,D|2. Then, we establish the following lemmas regarding the

probability distribution of I(Rb), I(D) and an important joint probability of the

channel gains in two phases, which is critical in deriving P opp
to .

Lemma 1 For one message transmission from S to D, the total interference I(Rb)

and I(D) are i.i.d., and can be approximated by a normal random variable with a

probability distribution function (pdf)

f(x) ≈ f̂(x) =
e−

(x−µ)2

2σ2

σ
√
2π

,

where

µ = (n− 1)
[
1− (1 + τ)e−τ

]
is the mean and

σ =

√
(n− 1)

[
1− τ 2e−τ − (1 + τ)2e−2τ

]
is the standard derivation of the normal random variable.

Lemma 2 For one message transmission from S to D, the joint probability that

|hS,Rb
|2 is greater than some constant x ≥ 0 and |hRb,D|2 is greater than some constant

y ≥ 0 can be determined as

P
(
|hS,Rb

|2 ≥ x, |hRb,D|2 ≥ y
)

= 1− (1− e−2max{x,y})n + ne−max{x,y} [φ (n,min{x, y})− φ (n,max{x, y})] ,

where φ(n, x) = e−x2F1

(
1
2
, 1− n; 3

2
; e−2x

)
and 2F1 is the Gaussian hypergeometric

function.
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Remark 2 Since S and relays transmit with the same power Pt, we can omit the Pt

in I(Rb) and I(D) in Lemma 1. The proofs of the above lemmas can be found in

Appendix A.1.

For a two-hop wireless network with the opportunistic relaying scheme, we are

now ready to derive its TOP P opp
to of the end-to-end transmission based on Lemma 1

and Lemma 2.

Theorem III.2 Consider the network scenario in Figure 3.1 with the cooperative

jamming scheme. The TOP P opp
to under the opportunistic relaying can be given by

P opp
to ≈ 2

∫ (n−1)τ

0

g(n, γ, x)f̂(x)

[
ξ

(
x− µ

σ

)
− ξ

(
−µ
σ

)]
dx

−2

∫ (n−1)τ

0

∫ x

0

ne−γxφ(n, γy)f̂(x)f̂(y)dydx, (3.13)

where where n is the number of relays, τ is the noise-generating threshold in co-

operative jamming, γ is the minimum required SIR for legitimate receivers to cor-

rectly decode the source message, f̂(x) = e
− (x−µ)2

2σ2

σ
√
2π

, ξ(x) = 1√
2π

∫ x
−∞ e−

t2

2 dt, µ =

(n − 1) [1− (1 + τ)e−τ ], σ =
√

(n− 1) [1− τ 2e−τ − (1 + τ)2e−2τ ], g(n, γ, x) = (1 −

e−2γx)n+ne−γxφ (n, γx), φ(n, x) = e−x2F1

(
1
2
, 1− n; 3

2
; e−2x

)
and 2F1 is the Gaussian

hypergeometric function.

Proof 2 According to the definition of TOP in (3.7), we have

P opp
to = 1− P (SIRS,Rb

≥ γ, SIRRb,D ≥ γ)

= 1− P
(
|hS,Rb

|2 ≥ γI(Rb), |hRb,D|2 ≥ γI(D)
)
,

where I(Rb) and I(D) are the total interferences in the first hop and second hop,

respectively. Applying the law of total probability, we have

P opp
to = 1− EI(Rb),I(D)

[
P
(
|hS,Rb

|2 ≥ γI(Rb), |hRb,D|2 ≥ γI(D)
)]

(3.14)
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Applying Lemma 1, we have

P opp
to ≈ 1−

∫ (n−1)τ

0

∫ (n−1)τ

0

P
(
|hS,Rb

|2 ≥ γx, |hRb,D|2 ≥ γy
)
f̂(x)f̂(y)dydx

Applying Lemma 2, we have

P opp
to = 2

∫ (n−1)τ

0

∫ x

0

{
(1− e−2γx)n − ne−γx [φ(n, γy)− φ(n, γx)]

}
f̂(x)f̂(y)dydx

= 2

∫ (n−1)τ

0

∫ x

0

g(n, γ, x)f̂(x)f̂(y)dydx

−2

∫ (n−1)τ

0

∫ x

0

ne−γxφ(n, γy)f̂(x)f̂(y)dydx

= 2

∫ (n−1)τ

0

g(n, γ, x)f̂(x)

[
ξ

(
x− µ

σ

)
− ξ

(
−µ
σ

)]
dx (3.15)

−2

∫ (n−1)τ

0

∫ x

0

ne−γxφ(n, γy)f̂(x)f̂(y)dydx,

which completes the proof.

3.2.2 SOP Analysis

From the definition of SOP in (3.8), we have

Pso = P

(
m∪
j=1

{
SIRS,Ej

≥ γe
}
or

m∪
j=1

{
SIRRi∗ ,Ej

≥ γe
})

(3.16)

= 1− P

(
m∩
j=1

{
SIRS,Ej

< γe
}
,
m∩
j=1

{
SIRRi∗ ,Ej

< γe
})

= 1−

[
P

(
m∩
j=1

{
SIRS,Ej

< γe
})]2

= 1−

[
P

(
m∩
j=1

{ |hS,Ej
|2∑

i∈J1
|hRi,Ej

|2
< γe

})]2
.

It can be seen from (3.16) that actually the SOP under both relaying schemes is

identical. The analytical result of the SOP is summarized in the following theorem.
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Theorem III.3 Consider the network scenario in Figure 3.1 with cooperative jam-

ming scheme. The SOP Pso under both the random relaying scheme and the oppor-

tunistic relaying scheme can be given by

Pso = 1−

 m∑
k=1

(
m

k

)
(−1)k

[
(1− e−τ )

(
1

1 + γe

)k
+ e−τ

]n−1
2

, (3.17)

where m is the number of eavesdroppers, n is the number of relays, τ is the noise-

generating threshold in cooperative jamming and γe is the minimum required SIR for

eavesdroppers to correctly decode the source message.

Proof 3 According to (3.16), we need to derive the probability

P

(
m∩
j=1

{ |hS,Ej
|2∑

i∈J1
|hRi,Ej

|2
< γe

})
.

Note that the number of noise-generating relays in the first hop |J1| follows the bi-

nomial distribution B(n − 1, 1 − e−τ ). We define the event that there are s noise-
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generating relays in the first hop (i.e., |J1| = s) by Bs and thus we have

P

(
m∩
j=1

{ |hS,Ej
|2∑

i∈J1
|hRi,Ej

|2
< γe

})
(3.18)

=
n−1∑
s=0

P

(
m∩
j=1

{ |hS,Ej
|2∑

i∈J1
|hRi,Ej

|2
< γe

} ∣∣∣Bs

)
P(Bs)

(a)
=

n−1∑
s=0

m∏
j=1

P
( |hS,Ej

|2∑
i∈J1

|hRi,Ej
|2
< γe

∣∣∣Bs

)
P(Bs)

(b)
=

n−1∑
s=0

m∏
j=1

E
[
1− e−γe

∑
i∈J1

|hRi,Ej
|2
]
P(Bs)

(c)
=

n−1∑
s=0

m∏
j=1

(
1−

∏
i∈J1

E
[
e−γe|hRi,Ej

|2
])

P(Bs)

=
n−1∑
s=0

[
1−

(
1

1 + γe

)s]m(
n− 1

s

)
(1− e−τ )s(e−τ )n−1−s

=
m∑
k=1

(
m

k

)
(−1)k

[
(1− e−τ )

(
1

1 + γe

)k
+ e−τ

]n−1

,

where (a) follows since all the {SIRS,Ej
, j = 1, · · · ,m} are conditionally independent

given the event Bs, (b) follows by applying the law of total probability and the ex-

pectation is computed with respect to {|hRi,Ej
|2, i ∈ J1} and (c) follows since all the

|hRi,Ej
|2 are i.i.d.. Therefore, (3.17) follows after substituting (3.18) into (3.16).

3.3 Eavesdropper-Tolerance Capability Analysis

In this section, we determine the ETC of the twp-hop relay wireless network

under the TOP and SOP constraints for both the random relaying and opportunistic

relaying schemes. For each relaying scheme, we first analyze the properties of the

optimization problems in (3.9) and then solve the related optimization problem to

obtain the ETC.
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3.3.1 ETC for Random Relaying

It can be observed from (3.9) that the noise-generating threshold τ is a critical

parameter in determining the ETC. A too large τ will do harm to the legitimate trans-

mission, while a too small τ is not enough to suppress the eavesdroppers. Therefore,

finding an optimal τ is the key step to solving our considered problem. Before solving

the problem, we first establish two lemmas regarding the monotonicity of P ran
to and

Pso, respectively.

Lemma 3 The TOP for the random relaying P ran
to increases monotonically as the

noise-generating threshold τ increases.

Proof 4 Define the term e−τ + 1−e−(1+γ)τ

1+γ
in the expression of P ran

to in Theorem III.1

as a function h(τ). We can easily compute its derivative as e−(1+γ)τ − e−τ , which is

less than 0 for γ > 0. Thus, P ran
to increases monotonically as τ increases.

Before giving the lemma regarding the monotonicity Pso, we establish the following

lemma based on the Stochastic Ordering in [58].

Lemma 4 Let X and Y be two N-dimensional random vectors such that

P(X ∈ U) ≤ P(Y ∈ U) for all upper sets U ∈ RN .

Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st

Y). And for all increasing function ∆, we always have E[∆(X)] ≤ E[∆(Y)].

Based on the above lemma, we are now ready to establish the following lemma in

terms of the monotonicity of SOP with respect to τ and m.

Lemma 5 The SOP Pso decreases monotonically as the noise-generating threshold τ

increases, but increases as the number of eavesdroppers m increases.
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Proof 5 Notice that the step following (c) in (3.18) can also be written as

E

[
1−

(
1

1 + γe

)|J1|
]
,

where the expectation is with respect to |J1|. For any 0 ≤ τ1 < τ2, we use two random

variables |J 1
1 | and |J 2

1 | to represent the number of noise-generating relays in the first

phase, where |J 1
1 | ∼ B(n− 1, 1− e−τ1) and |J 2

1 | ∼ B(n− 1, 1− e−τ2). It is shown in

[59] that |J 1
1 | ≤st |J 2

1 |. Applying Lemma 4, we can see that

E

[
1−

(
1

1 + γe

)|J 1
1 |
]
< E

[
1−

(
1

1 + γe

)|J 2
1 |
]
.

Therefore, the SOP Pso decreases as τ increases.

Next, we consider the step following (c) in (3.18) again. It is easy to see that the

term 1−( 1
1+γe

)l ∈ [0, 1). Thus, the term

[
1−

(
1

1+γe

)l]m
decreases with m. Therefore,

the SOP Pso increases as m increases.

Based on Lemma 3 and Lemma 5, we can give the ETC of the random relaying

in the following theorem.

Theorem III.4 Consider the network scenario in Figure 3.1 with the random re-

laying scheme. The ETC of the concerned network with n relays under a security

constraint εs and a reliability constraint εt is

Mran = max{m : G(m,n, τ ∗ran) ≥
√
1− εs},

where G(m,n, τ ∗ran) =
∑m

k=1

(
m
k

)
(−1)k

[
(1− e−τ

∗
ran)

(
1

1+γe

)k
+ e−τ

∗
ran

]n−1

, τ ∗ran is the

solution of P ran
to = εt and P

ran
to is given in Theorem III.1.

Proof 6 As shown in the formulation of ETC in (3.9), we need to find the optimal
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τ that maximizes Mran(τ), where

Mran(τ) = max{m : G(m,n, τ) ≥
√
1− εs}

according to its definition. Since the TOP P ran
to increases with τ according to Lemma

3, in order to guarantee the reliability (i.e., P ran
to ≤ εt), τ must take values in the

region [0, τm], where τm is the solution of P ran
to = εt.

Next, we need to prove that τm is the optimal τ (i.e.,τ ∗ran = τm) that achieves the

ETC. That is, for any τ ∈ [0, τm), we always have Mran(τ) ≤ Mran(τm). Now we

prove it by contradiction. Suppose there exists a τ ′ ∈ [0, τm) such that Mran(τ
′) ≥

Mran(τm) + 1. By Lemma 5, it can be seen that G(m,n, τ) increases with τ , while

decreasing with m. Thus, it is easy to see that

G(Mran(τm) + 1, n, τm) <
√
1− εs,

since Mran(τm) is the largest m satisfying G(m,n, τm) ≥
√
1− εs. Thus, we have

G(Mran(τm) + 1, n, τ ′) < G(Mran(τm) + 1, n, τm) <
√
1− εs

and

G(Mran(τm) + 1, n, τ ′) ≥ G(Mran(τ
′), n, τ ′) ≥

√
1− εs.

We can see a contradiction from the above two inequalities. Thus, for any τ ∈ [0, τm)

we always have Mran(τ) ≤ Mran(τm) (i.e., τ
∗
ran = τm) and thus the ETC is achieved

at τ ∗ran.

3.3.2 ETC for Opportunistic Relaying

Following the idea of determining the ETC of the random relaying, we first estab-

lish the following lemma regarding the monotonicity of P opp
to with respect to τ .
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Lemma 6 The TOP P opp
to for the opportunistic relaying scheme increases as τ in-

creases.

Proof 7 For any 0 < τ1 < τ2, we use random vector I1 = (I(Rb)
1, I(D)1) to represent

the interferences in two hops when the noise-generating threshold is τ1 and I2 =

(I(Rb)
2, I(D)2) to represent those for τ2. For any upper set

U =
{
(I(Rb), I(D))

∣∣I(Rb) ≥ x ≥ 0, I(D) ≥ y ≥ 0
}
,

we always have

P(I1 ∈ U) = P(I(Rb)
1 ≥ x)P(I(D)1 ≥ y)

and

P(I2 ∈ U) = P(I(Rb)
2 ≥ x)P(I(D)2 ≥ y).

It is easy to see that P(I(Rb)
1 ≥ x) < P(I(Rb)

2 ≥ x) and P(I(D)1 ≥ y) < P(I(D)2 ≥

y), since more interference can be generated as τ increases. Therefore, we have

P(I1 ∈ U) < P(I2 ∈ U) and then I1 ≤st I2 according to Lemma 4. Define the

term P (|hS,Rb
|2 ≥ γI(Rb), |hRb,D|2 ≥ γI(D)) in (3.14) by Γ(I) which decreases as I

increases, where I = (I(Rb), I(D)). Thus, we have E[Γ(I1)] > E[Γ(I2)] according to

Lemma 4. That is, for any 0 < τ1 < τ2, we always have P opp
to (τ1) < P opp

to (τ2), which

indicates the TOP P opp
to increases with τ .

By applying Lemma 5 and Lemma 6, we can establish the following theorem for

the ETC achieved by the opportunistic relaying.

Theorem III.5 Consider the network scenario in Figure 3.1 with the opportunistic

relaying scheme. The ETC of the concerned network with n relays under a security

constraint εs and a reliability constraint εt is

Mopp = max{m : G(m,n, τ ∗opp) ≥
√
1− εs},
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where G(m,n, τ ∗opp) =
∑m

k=1

(
m
k

)
(−1)k

[
(1− e−τ

∗
opp)
(

1
1+γe

)k
+ e−τ

∗
opp

]n−1

and τ ∗opp is

the solution of P opp
to = εt and P

opp
to is given in Theorem III.2.

Proof 8 The proof follows the same idea in proving the ETC of the random relaying,

so we omit it here.

3.4 Numerical Results and Discussions

In this section, we first verify our theoretical model for TOP and SOP through

extensive simulations. We then explore the impact of network parameters on the

TOP and SOP performances of both relaying scheme. Finally, we examine explore

how the number of relays n, the SIR thresholds γ and γe, the security constraint εs

and the reliability constraint εt affect the ETC of both relaying schemes.

3.4.1 Model Validation

A simulator was developed in C++ to simulate the message transmission from

the source S to the destination D based on the relaying and cooperative jamming

schemes introduced in Section 3.1, which is now available at [60]. The total number of

end-to-end transmissions from S to D is fixed as 100000. The simulated TOP (SOP)

is calculated as the ratio of the number of transmissions suffering from transmission

outage (secrecy outage) to the total number of transmissions 100000. To verify the

validity of the expressions for the TOP of both relaying schemes, we vary the number

of relays n from 10 to 490 with an interval of 20 and consider three different settings in

terms of the noise-generating threshold τ and the minimum required SIR γ, i.e., (τ =

0.1, γ = 2), (τ = 0.1, γ = 3) and (τ = 0.15, γ = 2). For the validation of the SOP, we

set the minimum required SIR as γe = 0.5 and vary n from 20 to 800 with an interval

of 20 and also consider three different network scenarios of (m = 100, τ = 0.05), (m =

100, τ = 0.1) and (m = 500, τ = 0.05), which correspond to sparse eavesdroppers with
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(a) TOP for random relaying P ran
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(b) TOP for opportunistic relaying P opp
to vs. number of relays n.

Figure 3.2: TOP vs. the number of relays n for different settings of τ and γ.

low interference, sparse eavesdroppers with high interference, and dense eavesdroppers

with low interference. The corresponding simulated results and theoretical results are

summarized in Figure 3.2 and Figure 3.3. Notice that simulations with other settings

can be easily performed by our simulator as well.
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Figure 3.3: SOP Pso vs. number of relays n with different settings of m and τ for
γe = 0.5.

Figure 3.2 and Figure 3.3 indicate clearly that the simulated results match nicely

with the theoretical ones for both TOP and SOP, so our theoretical model can be used

to effectively explore the TOP and SOP performances as well as the eavesdropper-

tolerance performance of the concerned network with the opportunistic (random)

relaying and cooperative jamming schemes.

3.4.2 TOP and SOP Performance

We now explore the impact of the number of relays n, the noise-generating thresh-

old τ and the minimum required SIR γ on the impact of TOP under both relaying

schemes. We can see from Figure 3.2 that the TOP under both relaying schemes

(i.e., P opp
to and P ran

to ) increases with the number of relays n. This is because that

adding more relays to the network has no impact on the link quality determined by

the random relaying, but will generate more interference at the intended receiver.

For the opportunistic relaying scheme, although adding more relays will improve the

diversity gain offered by the relays and thus improve the link quality, but the inter-
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ference from the noise-generating relays dominates the trend of the received SIR at

legitimate receivers. By comparing these three curves in Figure 3.2, it can also be

observed that both P opp
to and P ran

to increases as τ increases. This is due to the reason

that more interferences will be generated at the intended receiver for lager τ , and thus

it is more difficult for the receivers to successfully recover the messages. We can also

observe that for both relaying scheme, the TOP increases as the minimum required

SIR γ increases. This is because that a larger γ means a poorer decoding ability for

the intended receivers, thus resulting a larger TOP. Finally, comparing the results in

Figure 3.2a and Figure 3.2b, we can see that the opportunistic relaying achieves a

much smaller TOP than the random relaying, due to the improved link quality from

S to D by selecting the best relay. We now explore the impact of the number of relays

n, the noise-generating threshold τ and the number of eavesdroppers m on the impact

of SOP. We can see from Figure 3.3 that Pso decreases as n increases. This is because

more interferences can be generated at the eavesdroppers by distributing more relays

for a specific τ . By comparing these three curves in Figure 3.3, it can also be observed

that Pso increases as m increases while decreases as τ increases. This is intuitive since

distributing more eavesdroppers by the adversary would post more potential threats

to the end-to-end transmission and increasing τ would generate more interferences at

the eavesdroppers, so it is more difficult for them to successfully decode the messages.

3.4.3 Eavesdropper-tolerance Performances

Based on the SOP and TOP models, we now explore the ETC performance of

both relaying schemes for opportunistic relaying scheme. To illustrate the impact of

the security constraint εs and the reliability constraint εt on the ETC of both relaying

scheme, we show in Figure 3.4 the behavior of ETC vs. εt and εs for the network

scenario of n = 2000, γe = 0.5. For the random relaying scheme, we set γ = 1.0, while

for the opportunistic relaying scheme, we set γ = 10, which means that we consider
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(b) ETC of opportunistic relaying Mopp vs. εt and εs for γ = 10.

Figure 3.4: ETC vs. reliability constraint εt and security constraint εs for n = 2000
and γe = 0.5.

more powerful intended receivers in terms of the decoding ability for the random

relaying scheme. Notice that both values of γ imply that the legitimate receivers has
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a worse decoding ability than the eavesdroppers. We can observe from Figure 3.4

that the ETC of both relaying schemes increases as εt and εs increase. This reflects

that the network can tolerate more eavesdroppers by relaxing either the security or

reliability constraint. A careful observation of both figures in Figure 3.4 indicates

a clear trade-off between the reliability and security in order to guarantee a certain

level of ETC. For example, in Figure 3.4b, εt has to increase from 0.04 to 0.085 as

εs decreases from 0.03 to 0.02 for achieving an eavesdropper-tolerance capacity of

about1000. This suggests that either the security or reliability requirement has to

sacrifice for the other one in order to achieve a certain ETC. Comparing the results

in Figure 3.4a and Figure 3.4b, we can see that the opportunistic relaying scheme

can achieve a much better ETC performance, which is orders of magnitude more

than that ensured by the random relaying scheme, even we consider a much worse

decoding ability for the receivers in the scenario with opportunistic relaying scheme.

For example, the ETC of random relaying scheme is about 10, while the ETC of

opportunistic relaying is about 8000 for εt = 0.1 and εs = 0.1.

To explore how the number of relays n, the minimum required SIR γ and γe affect

the eavesdropper-tolerance capability, we show the behaviors of ETC vs. n for both

relaying schemes in Figure 3.5. We set εt = 0.1 and εs = 0.1 for the random relaying

scheme and consider three different settings of γ and γe, i.e., (γ = 0.6, γe = 0.5),

(γ = 0.7, γe = 0.5) and (γ = 0.7, γe = 0.6). The corresponding results are summarized

in Figure 3.5a. For the scenario of opportunistic relaying scheme, we set εt = 0.01 and

εs = 0.01 and also consider three different settings of γ and γe, i.e., (γ = 10, γe = 0.5),

(γ = 11, γe = 0.5) and (γ = 11, γe = 0.5). It can be observed from Figure 3.5 that

both Mran and Mopp increase as n increases. This is because that although the

optimal noise-generating threshold threshold τ decreases as n increase for a specific

reliability constraint εt, the corresponding expected number of noise-generating nodes

increases, so more interferences can be generated to suppress the eavesdroppers while
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Figure 3.5: ETC vs. number of relays n.

the desired reliability can still be ensured. By comparing the three curves in both

figures, we can also observe that the ETC of both relaying schemes increases as

γe increases, while decreases as γ increases. This is intuitive since decreasing the

decoding ability (i.e., increasing γe) of the eavesdroppers would decrease the SOP,

while decreasing the decoding ability (i.e., increasing γ) of legitimate receivers would

41



increase the TOP. It is interesting to notice that both Mran and Mopp increases

dramatically when n is above some threshold in Figure 3.5a and 3.5b. For example,

for the case of γ = 11 and γe = 0.6 in Figure 3.5b, this threshold is about 2500. Thus,

distributing more relays would be an effective approach to enhance the eavesdropper-

tolerance capability of a network.

By comparing Figure 3.5a and Figure 3.5b, we can still see that the ETC of op-

portunistic relaying is much larger than that of the random relaying scheme, even we

consider more stringent security and reliability constraints and much worse decoding

ability for the opportunistic relaying scheme. For example, when the network has

n = 3000 relays, for the case of (γ = 0.7, γe = 0.6), the network can tolerate about

200 eavesdroppers (in Figure 3.5a) for the random relaying scheme, which is much

less than about 9000 eavesdroppers in the case of (γ = 11, γe = 0.6) in Figure 3.5b for

the opportunistic relaying scheme. This again proves that the opportunistic relaying

scheme significantly outperforms the random relaying schemes in terms of the ETC

performance.

3.5 Summary

This chapter considered the secure and reliable transmission from the source to

the destination via cooperative jamming in two-hop relay wireless networks with

multiple passive and independently-operating eavesdroppers of unknown location and

channel information. Instead of scaling law results for infinite networks and bounds

for finite networks, we determined the exact eavesdropper-tolerance capability to

ensure the desired security and reliability based on the metrics of secrecy outage

probability and transmission outage probability. We consider two relaying schemes,

i.e., the random relaying and opportunistic relaying. For both schemes, the results

in this paper indicate that the eavesdropper-tolerance capability of the network can

be increased if we distribute more relays or relax either the requirement of reliability
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or the requirement of security. More importantly, we observe that the opportunistic

relaying scheme can achieve a much better ETC performance, which is usually orders

of magnitude more than that ensured by the random relaying scheme.
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CHAPTER IV

Physical Layer Security Performance Study of

Small-Scale Wireless Networks with Colluding

Eavesdroppers

This chapter focuses on the PHY security performance study of small-scale wireless

networks with colluding eavesdroppers, for which we investigate the SOP performance

of a two-hop relay wireless networks under eavesdropper collusion. We consider two

eavesdropper scenarios to depict the behavior of eavesdroppers, i.e., non-colluding sce-

nario where eavesdroppers do not collude and operate independently and M-colluding

scenario where M eavesdroppers can collude to exchange and combine the received

signals so as to improve the successful decoding probability. We first derive the ana-

lytical expression for the SOP under the non-colluding scenario, we then derive the

SOP under the M-colluding scenario by applying the techniques of Laplace transform,

keyhole contour integral and Cauchy Integral Theorem. Finally, simulation and nu-

merical results are provided to demonstrate the validity of the theoretical analysis

also to illustrate our theoretical findings.
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4.1 System Model and Problem Formulation

4.1.1 Network Model

We consider a two-hop wireless network (depicted in Figure 4.1), consisting of a

source node S, a destination nodeD, n legitimate relays R1, R2, · · · , Rn andm passive

eavesdroppers E1, E2, · · · , Em of unknown channel information. Each node employs

a single antenna and operates in half-duplex mode. The direct link between S and D

is assumed unavailable due to deep fading or limited transmit power. The n relays

assist in forwarding the message from S to D while preventing the eavesdroppers from

intercepting the message. We assume that time is slotted and all channels, suffering

from Rayleigh fading, remain constant during one time slot and vary randomly and

independently from slot to slot. The channel coefficient hi,j of link i → j is modeled

as a complex zero-mean Gaussian random variable with unit variance and thus |hi,j|2

is exponentially distributed with unit mean. All channel coefficients (S −R, R−D,

R−R, S−E, R−E) are assumed i.i.d.. The network is assumed interference-limited

and thus the noise at each receiver is negligible.

To accomplish the secure two-hop transmission from S to D, we adopt the op-

portunistic relaying, cooperative jamming and transmission schemes as introduced in

Chapter III. A relay Rb with the largest min{|hS,Ri
|2, |hRi,D|2} announces itself as

the message relay in a distributed manner before the transmission. We assume that

only one S −D transmission, including the relay selection, can be conducted in one

time slot. In the first hop, S transmits its message to Rb, while relays with indices in

J1 =
{
i
∣∣i ̸= b, |hRi,Rb

|2 < τ
}
serve as helper jammers to generate random Gaussian

noise. Here, τ is the noise-generating threshold to mitigate interference at intended

receivers. We assume a common transmit power Pt for all transmitters. Hence, the
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Figure 4.1: Network model: A source S is communicating with a destination D with
the help of relays R1, R2, · · · , Rn, n = 6. R4 is selected as the message relay based on
the opportunistic relaying scheme. In Hop 1, R1, R5 and R6 are jammers that generate
artificial noise, while R2 and R6 are jammers in Hop 2. E1, E2, · · · , Em,m = 5
are eavesdroppers that try to intercept the message, and E1 and E2 are colluding
eavesdroppers.

received SIR at Rb and that at Ej can be given by

SIRS,Rb
=

|hS,Rb
|2∑

i∈J1
|hRi,Rb

|2
, SIRS,Ej

=
|hS,Ej

|2∑
i∈J1

|hRi,Ej
|2
. (4.1)

If Rb is successful in decoding the message received from S, it re-encodes the

message and then sends it to D in the second hop. Meanwhile, relays with indices in

J2 =
{
i
∣∣i ̸= b, |hRi,D|2 < τ

}
serve as helper jammers to generate artificial noise. If Rb

fails to decode the message, the transmission will be suspended. We assume that Rb

will send back an ACK message to inform S whether a decoding failure happens or

not, based on which S will then decide whether to suspend the transmission or not.

If a transmission suspension happens during one time slot, it will end at the end of

that time slot, and retransmission of the suspended message will be conducted in the

next time slot. The received SIR at D and Ej can be given by

SIRRb,D =
|hRb,D|2∑
i∈J2

|hRi,D|2
, SIRRb,Ej

=
|hRb,Ej

|2∑
i∈J2

|hRi,Ej
|2
. (4.2)
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A legitimate receiver (eavesdropper) is said successful in decoding the received signal

if its received SIR is above a minimum required SIR γ (γe).

4.1.2 Eavesdropper Scenarios

Regarding the eavesdropper behavior, we focus on the following two scenarios,

1. Non-Colluding case: each eavesdropper works independently and decodes

the message from the source solely based on its available observations, i.e., the

first-hop observation if the transmission is suspended in the second hop or the

combined observations in both hops, otherwise.

2. M-Colluding case: any M eavesdroppers (say, E1, E2, · · · , EM , 1 ≤ M ≤ m,

M = 2 as illustrated in Figure 4.1) can combine their available observations to

decode the message from the source.

Here, M is referred to as the collusion intensity to quantify the level of eavesdropper

collusion. As assumed in [37–48, 61], these colluding eavesdroppers can be treated as

a super eavesdropper with M antennas, whose SIR is given by the aggregate SIR of

all antennas.

4.1.3 Problem Formulation

We adopt the SOP metric as introduced in Chapter III to characterize the security

performance of the concerned network under eavesdropper collusion, which is defined

as the probability that the received SIR of at least one of the eavesdroppers is above

γe. Therefore, by defining A as the event that the transmission is suspended in the

second hop, the SOP P nc
so for the non-colluding case can be formulated as

P nc
so = P

(
m∪
j=1

{SIRS,Ej
≥ γe}, A

)
+ P

(
m∪
j=1

{SIRS,Ej
+ SIRRb,Ej

≥ γe}, Ā

)
, (4.3)
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where Ā is the complement of event A. Similarly, the SOP P c
so for the M-colluding

case can be formulated as

P c
so= P

({
SIRA

agg ≥ γe or
m∪

j=M+1

{SIRS,Ej
≥ γe}

}
, A

)
(4.4)

+P

({
SIRĀ

agg ≥ γe or
m∪

j=M+1

{SIRS,Ej
+ SIRRb,Ej

≥ γe}

}
, Ā

)
, (4.5)

where

SIRA
agg =

M∑
j=1

SIRS,Ej

denotes the aggregate SIR of M colluding eavesdroppers under event A and

SIRĀ
agg =

M∑
j=1

SIRS,Ej
+ SIRRb,Ej

denotes that under event Ā.

4.2 Secrecy Outage performance under Non-Colluding Case

In this section, we derive the SOP of the non-colluding eavesdropper case, for

which we will first establish the following lemma regarding the probability that the

transmission is suspended in the second hop, conditioned on the number of jammers

in the first hop.

Lemma 7 Define the number of jammers in Hop h (h = 1, 2) by Jh and the event

Jh = s by Jsh. For a two-hop S −D transmission with the opportunistic relaying and

cooperative jamming schemes, the probability pA|Js
1
that the transmission is suspended

in the second hop under the condition Js1 can be determined as

pA|Js
1
=

n∑
k=0

(
n

k

)
(−1)k

2k − 1

[
k

(
1− e−(1+γ)τ

(1− e−τ )(1 + γ)

)s
+ (k − 1)

(
1− e−(2kγ+1)τ

(1− e−τ )(2kγ + 1)

)s]
,
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where n is the number of relays, τ is the noise-generating threshold in cooperative

jamming and γ is the minimum required SIR for legitimate receivers to correctly

decode the source message.

Proof 9 Please refer to Appendix B.1.

Based on Lemma 7, the SOP of the non-colluding case can be obtained by applying

the law of total probability, which is given by the following theorem.

Theorem IV.1 Consider a two-hop wireless network as shown in Figure 4.1. For

the S − D transmission under the opportunistic relaying, cooperative jamming and

non-colluding eavesdropper case, the corresponding SOP P nc
so can be formulated as

P nc
so = 1−

n−1∑
s=0

n−1∑
t=0

(
n− 1

s

)(
n− 1

t

)
(1− e−τ )s+te−(2n−2−s−t)τ [(1− pA|Js

1
)pm2 + pA|Js

1
pm1
]
,

where n is the number of relays, τ is the noise-generating threshold in cooperative

jamming, p1 = 1 −
(

1
1+γe

)s
, p2 =

∫ γe
0

[
1− 1

(1+γe−x)t

]
s

(1+x)s+1dx and pA|Js
1
is given in

Lemma 7.

Proof 10 We start the proof with the first term in (4.3). By the law of total proba-

bility, we have

P

(
m∪
j=1

{SIRS,Ej
≥ γe}, A

)
(4.6)

=
n−1∑
s=0

P

(
m∪
j=1

{SIRS,Ej
≥ γe}, A

∣∣∣Js1
)
P(Js1)

=
n−1∑
s=0

P

(
m∪
j=1

{SIRS,Ej
≥ γe}

∣∣∣Js1
)
pA|Js

1
P(Js1)

=
n−1∑
s=0

[
1− P

(
m∩
j=1

{SIRS,Ej
< γe}

∣∣∣Js1
)]

pA|Js
1
P(Js1)

=
n−1∑
s=0

[
1− P

(
SIRS,Ej

< γe|Js1
)m]

pA|Js
1
P(Js1).
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Next, we consider the cumulative distribution function (cdf) of SIRS,Ej
under the

condition Js1 , which can be given by

FγS,Ej
(x|Js1) = P

(
SIRS,Ej

< x
∣∣∣Js1)

= P

(
|hS,Ej

|2 < x
∑
i∈J1

|hRi,Ej
|2
∣∣∣Js1
)

= 1− E{|hRi,Ej
|2,i∈J1}

[
e−x

∑
i∈J1

|hRi,Ej
|2
∣∣∣Js1]

= 1−
∏
i∈J1

E|hRi,Ej
|2
[
e−x|hRi,Ej

|2
]

= 1−
(

1

1 + x

)s
.

From the above cdf, it is easy to see that

P
(
SIRS,Ej

< γe|Js1
)
= 1−

(
1

1 + γe

)s
= p1. (4.7)

As J1 is a binomial random variable, it follows that

P(Js1) =
(
n− 1

s

)
(1− e−τ )se−(n−1−s)τ . (4.8)

Hence, substituting (4.7) and (4.8) into (4.6) yields

P

(
m∪
j=1

{SIRS,Ej
≥ γe}, A

)
=

n−1∑
s=0

(
n−1

s

)
(1−e−τ )se−(n−1−s)τ (1−pm1 )pA|Js

1
. (4.9)

We now consider the second term in (4.3). Likewise, taking the expectation of

(4.3) in terms of J1 and J2 yields

P

(
m∪
j=1

{SIRS,Ej
+ SIRRb,Ej

≥ γe}, Ā

)
(4.10)

=
n−1∑
s=0

n−1∑
t=0

[
1− P

(
SIRS,Ej

+ SIRRb,Ej
< γe|Js1 , J t2

)m]P(Ā|Js1)P(Js1)P(J t2).
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It is straightforward to see that P(Ā|Js1) = 1−pA|Js
1
, and P(J t2) =

(
n−1
t

)
(1−e−τ )te−(n−1−t)τ .

Similar to (4.7), the cdf of SIRRb,Ej
under the condition J t2 can be given by FSIRRb,Ej

(x|J t2) =

1− ( 1
1+x

)t. From (4.7), the pdf of SIRS,Ej
under the condition Js1 is fSIRS,Ej

(x|Js1) =
s

(1+x)s+1 . Hence,

P
(
SIRS,Ej

+ SIRRb,Ej
< γe|Js1 , J t2

)
=

∫ γe

0

[
1− 1

(1 + γe − x)t

]
s

(1 + x)s+1
dx = p2. (4.11)

Substituting (4.8), (4.11), P(Ā|Js1) and P(J t2) into (4.10) yields

P

(
m∪
j=1

{SIRS,Ej
+ SIRRb,Ej

≥ γe}, Ā

)
(4.12)

=
n−1∑
s=0

n−1∑
t=0

(
n− 1

s

)(
n− 1

t

)
(1− e−τ )s+te−(2n−2−s−t)τ (1− pm2 )(1− pA|Js

1
).

Finally, the theorem follows after summing (4.9) and (4.12).

4.3 Secrecy Outage Performance under M-Colluding Case

In this section, the SOP of the M-colluding case is investigated, for which we

will first derive the cdf of the aggregate SIR SIRA
agg and SIRĀ

agg of any M colluding

eavesdroppers, based on which we then determine the SOP.

4.3.1 Aggregate SIR Analysis

Notice that the aggregate SIR SIRA
agg and SIRĀ

agg are the sums of multiple i.i.d.

random variables. The derivation of their cdf usually involves a multi-fold convolution,

which is highly cumbersome in general. To work around this problem, we first take

the Laplace transforms of their pdf and then compute the related inverse Laplace

transform by applying the keyhole contour integral and Cauchy Integral Theorem.
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Finally, the cdf can be obtained from the corresponding pdf. The related lemma and

proof are summarized as follows.

Lemma 8 Define the cdf of SIRA
agg under event A by FM(x) and that of SIRĀ

agg

under event Ā by F2M(x). For a two-hop S−D transmission under the opportunistic

relaying, cooperative jamming and M-colluding eavesdropper case, FM(x) under the

conditions Js1 and J t2 can be given by

FM(x) = sM
⌊M−1

2
⌋∑

k=0

(
M

2k + 1

)
(−π2)k (4.13)

×
∫ ∞

0

1

u
(1− e−xu)e−MuEIs(u)

M−2k−1

(
us

s!

)2k+1

du

and F2M(x) under the conditions Js1 and J t2 can be given by

F2M(x) = (st)M
⌊M−1

2
⌋∑

k=0

(
M

2k + 1

)
(−π2)k (4.14)

×
∫ ∞

0

1

u
(1− e−xu)e−2Mu

[
EIs(u)EIt(u)− π2u

s+t

s!t!

]M−2k−1

×
[
EIs(u)

ut

t!
+ EIt(u)

us

s!

]2k+1

du

where

EIs(u) =
us

s!

(
s∑

k=1

1

k
− cE − lnu

)
−

∞∑
k=0,k ̸=s

uk

(k − s)k!
(4.15)

and cE = 0.5772156649... is the Euler’s constant.

Proof 11 Define fM(x) the pdf of SIRA
agg and LfM (z) its Laplace transform. Based

on the pdf fSIRS,Ej
(x) = s

(1+x)s+1 of SIRS,Ej
under the condition Js1 , LfM (z) can be

determined as LfM (z) = (sezEs+1(z))
M by the convolution property of Laplace trans-

form, where Es+1(z) =
∫∞
1

e−zv

vs+1dv is the generalized exponential integral.
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Figure 4.2: Illustration of the keyhole contour, where C1 is a vertical line from c− iR
to c+ iR, C2 and C6 forms a large (almost) semi-circle centered at s = c with radius
R, C3 is a line from c− R to −r, C4 is a small (almost) circle centered at the origin
with radius r, C5 is a line from −r to c−R.

Next, fM(x) can be obtained by taking the inverse Laplace transform of LfM (z) ,

that is, fM(x) = 1
2πi

∫ c+i∞
c−i∞ ezxLfM (z)dz, where c > 0 is an arbitrary constant greater

than the real part of all singularities of LfM (z). Since Es+1(z) is analytical in the

complex plane except its branch cut along the negative real axis and branch point at

the origin, the above integral can be evaluated as a part of the integral along a keyhole

contour Ω [62], as illustrated in Figure 4.2. As LfM (z) is analytical in Ω, by the

Cauchy Integral Theorem, we have
∫
Ω
ezxLfM (z)dz = 0. Hence,

fM(x) =
1

2πi
lim
R→∞

∫
C1

ezxLfM (z)dz (4.16)

= − 1

2πi
lim

R→∞,r→0

∫
C2

+

∫
C3

+

∫
C4

+

∫
C5

+

∫
C6

ezxLfM (z)dz

= − 1

2πi
lim

R→∞,r→0

∫
C3

+

∫
C5

ezxLfM (z)dz.

54



To see this, we need to prove that the integrals along C2, C4 and C6 vanish in the

limit. First, letting z = c+Reiθ, θ ∈ [π/2, π] for any point z on C2 yields

lim
R→∞

∣∣∣∣∫
C2

ezxLfM (z)dz

∣∣∣∣ = lim
R→∞

∣∣∣∣∣
∫ π

π
2

ex(c+Re
iθ)LfM (c+Reiθ)iReiθdθ

∣∣∣∣∣
≤ lim

R→∞

∫ π

π
2

∣∣∣ex(c+Reiθ)∣∣∣ ∣∣LfM (c+Reiθ)
∣∣ ∣∣iReiθ∣∣ dθ

≤ lim
R→∞

max
θ∈[π/2,π]

∣∣LfM (c+Reiθ)
∣∣Rexc ∫ π

π
2

exR cos θdθ

= lim
R→∞

max
θ∈[π/2,π]

∣∣LfM (c+Reiθ)
∣∣Rexc ∫ π

2

0

e−xR sinαdα.

Since sinα ≥ 2α
π

for any α ∈ [0, π
2
], then we have

∫ π
2

0

e−xR sinαdα ≤
∫ π

2

0

e−2xRα/πdα =
π

2xR
(1− e−xR) ≤ π

2xR
,

and thus

lim
R→∞

∣∣∣∣∫
C2

ezxLfM (z)dz

∣∣∣∣ ≤ lim
R→∞

πexc

2x
max

θ∈[π/2,π]

∣∣LfM (c+Reiθ)
∣∣ .

From Equation (5.1.51) in [63], we know

ezEs+1(z) ∼
1

z
− s+ 1

z2
+

(s+ 1)(s+ 2)

z3
+ · · · ,

hence

|ec+ReiθEs+1(c+Reiθ)| = O(1/R)

and then

max
θ∈[π/2,π]

∣∣LfM (c+Reiθ)
∣∣ = O(1/RM),

as R → ∞. Therefore, limR→∞

∣∣∣∫C2
ezxLfM (z)dz

∣∣∣ = 0. Likewise, it can be easily seen

that the integral along C6 vanishes as R tends to infinity and that along C4 vanishes
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as r tends to zero.

Now, we proceed to evaluate the integrals along C3 and C5. By letting z = ueiπ

for the integral along C3 and z = ue−iπ for that along C5, we have

fM(x) = − 1

2πi
lim

R→∞,r→0

∫
C3

+

∫
C5

ezxLfM (z)dz (4.17)

= − 1

2πi
lim

R→∞,r→0

∫ −r

c−R
+

∫ c−R

−r
ezxLfM (z)dz

=
1

2πi

∫ ∞

0

e−xu
(
LfM (ue−iπ)− LfM (ueiπ)

)
du

=
sM

2πi

∫ ∞

0

e−(x+M)u
[
Es+1(ue

−iπ)M − Es+1(ue
iπ)M

]
du.

From Equation (5.1.12) in [63], we have Es+1(ue
±iπ) = EIs(u)∓iπ u

s

s!
, where EIs(u) =

us

s!

(∑s
k=1

1
k
− cE − lnu

)
−
∑∞

k=0,k ̸=s
uk

(k−s)k! and cE = 0.5772156649... is the Euler’s

constant. Hence,

Es+1(ue
−iπ)M − Es+1(ue

iπ)M (4.18)

=

(
EIs(u) + iπ

us

s!

)M
−
(
EIs(u)− iπ

us

s!

)M
= 2πi

⌊M−1
2

⌋∑
k=0

(
M

2k + 1

)
(−π2)kEIs(u)

M−2k−1

(
us

s!

)2k+1

.

Substituting (4.18) into (4.17) yields

fM(x) =

∫ ∞

0

e−(x+M)uκ(M, s, u)du,

where

κ(M, s, u) = sM
⌊M−1

2
⌋∑

k=0

(
M

2k + 1

)
(−π2)kEIs(u)

M−2k−1

(
us

s!

)2k+1

.
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The cdf FM(x) of SIRA
agg can be determined via the integration of fM(x) as

FM(x) =

∫ ∞

0

1

u
(1− e−xu)e−Muκ(M, s, u)du.

Finally, taking the integral for each summand involving u in κ(M, s, u) first and then

summing the integrals yields (4.13).

We now consider the cdf F2M(x) of SIRĀ
agg. Similarly, we define f2M(x) the pdf

of SIRĀ
agg and Lf2M (z) its Laplace transform. Again, by the convolution property of

Laplace transform, we have Lf2M (z) = (s·t·e2zEs+1(z)Et+1(z))
M under the conditions

Js1 and J t2. Taking the inverse Laplace transform of Lf2M (s) along again the keyhole

contour in Figure 4.2 yields

f2M(x) (4.19)

=
(st)M

2πi

∫ ∞

0

e−(x+2M)u
[
(Es+1(ue

−iπ)Et+1(ue
−iπ))M − (Es+1(ue

iπ)Et+1(ue
iπ))M

]
du

=

∫ ∞

0

e−(x+2M)uϕ(M, s, t, u)du,

where

ϕ(M, s, t, u) = (st)M
⌊M−1

2
⌋∑

k=0

(
M

2k + 1

)
(−π2)k (4.20)

×
[
EIs(u)

ut

t!
+ EIt(u)

us

s!

]2k+1 [
EIs(u)EIt(u)− π2u

s+t

s!t!

]M−2k−1

.

The cdf F2M(x) of SIRĀ
agg is determined as

F2M(x) =

∫ ∞

0

1

u
(1− e−xu)e−2Muϕ(M, s, t, u)du. (4.21)

Likewise, taking the integral for each summand in ϕ(M, s, t, u) first and then summing

the integrals yields (4.14).
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4.3.2 SOP Modeling

Based on Lemma 8, the SOP of M-colluding case is given by the following theorem.

Theorem IV.2 Consider a two-hop wireless network as shown in Figure 4.1. For

the S − D transmission under the opportunistic relaying, cooperative jamming and

M-colluding eavesdropper case as described in Section 4.1, the corresponding SOP P c
so

can be formulated as

P c
so = 1−

n−1∑
s=0

n−1∑
t=0

(
n− 1

s

)(
n− 1

t

)
(1− e−τ )s+te−(2n−2−s−t)τ (4.22)

×
[
(1− pA|Js

1
)pm−M

2 F2M(γe) + pA|Js
1
pm−M
1 FM(γe)

]
, (4.23)

where m is the number of eavesdroppers, M denotes the collusion intensity, n is the

number of relays, τ is the noise-generating threshold in cooperative jamming, γe is

the minimum required SIR for eavesdroppers to correctly decode the source message,

p1 = 1−
(

1
1+γe

)s
, p2 =

∫ γe
0

[
1− 1

(1+γe−x)t

]
s

(1+x)s+1dx, pA|Js
1
is given in Lemma 7, and

FM(γe) and F2M(γe) can be directly obtained from Lemma 8.

Proof 12 Similar to the proof of Theorem IV.1, the first term in (4.4) can be deter-

mined by taking its expectation in terms of J1 as

P

({
SIRA

agg ≥ γe or
m∪

j=M+1

{SIRS,Ej
≥ γe}

}
, A

)
(4.24)

= EJ1

[
P

({
SIRA

agg ≥ γe or
m∪

j=M+1

{SIRS,Ej
≥ γe}

}
, A
∣∣∣Js1
)]

=
n−1∑
s=0

[
1− P

(
SIRA

agg < γe

∣∣∣Js1
)
P
(
SIRS,Ej

< γe

∣∣∣Js1)m−M
]
pA|Js

1
P(Js1)

=
n−1∑
s=0

(
n− 1

s

)
(1− e−τ )se−(n−1−s)τ

[
1− pm−M

1 FM(γe)
]
pA|Js

1
.

The second term in (4.4) can be determined by taking its expectation in terms of J1
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and J2 as

P

({
SIRĀ

agg ≥ γe or
m∪

j=M+1

{SIRS,Ej
+ SIRRb,Ej

≥ γe}

}
, Ā

)
(4.25)

=
n−1∑
s=0

n−1∑
t=0

P(Ā|Js1)P(Js1)P(J t2)

×

[
1− P

(
SIRĀ

agg < γe

∣∣∣Js1 , J t2
)
P
(
SIRS,Ej

+ SIRRb,Ej
< γe|Js1 , J t2

)m−M
]

=
n−1∑
s=0

n−1∑
t=0

(
n−1

s

)(
n−1

t

)
(1−e−τ )s+te−(2n−2−s−t)τ (1−pA|Js

1
)
[
1−pm−M2 F2M(γe)

]
.

Finally, summing (4.24) and (4.25), the theorem then follows.

4.4 Numerical Results and Discussions

In this section, we first validate our theoretical analysis for SOP modeling through

extensive simulations and then explore how the number of relays n, noise-generating

threshold τ , SIR thresholds γe and γ, and the collusion intensityM affect the secrecy

outage performance of the network.

4.4.1 Model Validation

A simulator was developed in C++ to simulate the S−D transmission under the

system model as described in Section 4.1, which is now available at [64]. The total

number of S − D transmissions is fixed as 100000 and the SOP is measured as the

ratio of the number of transmissions suffering from secrecy outage to the total number

of transmissions. To verify our theoretical analysis, we conduct extensive simulations

for both the non-colluding case and the colluding case under various settings of n and

M . The number of eavesdroppers is set as m = 10, the noise-generating threshold is

set as τ = 0.5, the transmit power is set as Pt = 100, and the decoding thresholds for

eavesdroppers and legitimate receivers are set as γe = 0.5 and γ = 1.0, respectively.
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Figure 4.3: Model validation for different collusion intensityM , withm = 10 , τ = 0.5,
γe = 0.5 and γ = 1.0.

Simulations with other settings can be easily conducted by our simulator as well. The

simulation results and the related theoretical ones are summarized in Figure 4.3.

It can be observed from Figure 4.3 that the simulation results match fairly well

with the theoretical ones for both the non-colluding case and the colluding case with
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different collusion intensity M , which implies that our theoretical analysis is effective

in modeling the secrecy outage performance of the concerned system. A careful obser-

vation in Figure 4.3 reveals that the curve M = 1 of the colluding case coincides with

that of the non-colluding case, which is intuitive and further proves the effectiveness

of our theoretical analysis.

4.4.2 Performance Evaluation

Regarding the impact of the number of relays n on the secrecy outage performance,

it can be observed from Figure 4.3 that the SOP decreases as n increases for both

the non-colluding case and the colluding case with different collusion intensity M .

This is mainly due to the reason that, in the cooperative jamming scheme, more

interference will be generated at the eavesdroppers for a larger number of relays,

and thus the probability that eavesdroppers successfully decode the source message

would decrease. This suggests that distributing more relays is an effective approach

to decreasing the possibility of secrecy outage, and thus improving the security of the

concerned network. A careful observation from Figure 4.3 indicates that to degrade

the SOP to 50%, at least 20 relay nodes are required for M = 1 and at least 30 nodes

are required for M = 5. This is because that the artificial noises generated from the

jammers not only degrade the eavesdropper channels but also degrade those of the

legitimate transmitter-receiver pairs at the same time.

To understand the impact of eavesdropper collusion M on the secrecy outage

performance, we summarize in Figure 4.4 how the SOP varies with M for three

different γe (i.e., γe = 0.3, γe = 0.5 and γe = 1.0), when n = 30, m = 10, τ = 0.5

and γ = 1.0. We can see from Figure 4.4 that as the collusion intensity M increases,

so does the SOP, implying that the eavesdropper collusion will significantly increase

the possibility of secrecy outage, i.e., deteriorate the security performance of the

concerned network. For example, the SOP for γe = 1.0 when all the eavesdroppers
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Figure 4.4: Secrecy outage probability vs. collusion intensity M for different γe, with
n = 30, m = 10, τ = 0.5 and γ = 1.0.
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Figure 4.5: SOP vs. noise-generating threshold τ for different M , with n = 30,
m = 10, γe = 0.5 and γ = 1.0.

collude (i.e., M = m = 10) is 0.61825, which is much greater than the one 0.03346

when no eavesdroppers collude (i.e., M = 1). Another observation from Figure 4.4
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Figure 4.6: Relationship between theoretical results and representative network cases.

reveals that the SOP increases as the SIR threshold γe for eavesdroppers decreases,

which is very intuitive since a smaller γe results in a greater decoding ability for

eavesdroppers.

To see how the noise-generating threshold τ affect the secrecy outage performance,

we summarize in Figure 4.5 how the SOP varies with τ for different collusion intensity

M , when n = 30, m = 10, γe = 0.5 and γ = 1.0. The results in Figure 4.5 indicate

that the SOP decreases as the noise-generating threshold τ increases for both the

non-colluding (M = 1) and colluding cases (M > 1), which is also because that more

interference will be generated at the eavesdroppers for a greater τ . This indicates

that increasing the noise-generating threshold is also an effective way to enhance the

security performance of the concerned network.

To illustrate the relationships between the theoretical SOP results and network

cases, we provide the SOP results for six representative networks cases in Figure 4.6

for n = 30, m = 10, γe = 0.5 and γ = 1.0. We consider three different cases of

collusion intensity (i.e., M = 1, M = 5 and M = 10), which correspond to the

cases of no colluding, half colluding and full colluding respectively. For the jamming

63



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n = 30, m = 10, e = 0.5,  = 0.5

 M = 1
 M = 5
 M = 10

Se
cr

ec
y 

ou
ta

ge
 p

ro
ba

bi
lit

y

SIR threshold for legitimate receivers, 

Figure 4.7: SOP vs. SIR threshold for legitimate receivers γ for different M , with
n = 30, m = 10, γe = 0.5 and τ = 0.5.

strength, we consider two cases of noise-generating threshold (i.e., τ = 0.05 and

τ = 1.0), which correspond to the cases of weak jamming and strong jamming. We

can see from Figure 4.6 that the SOP increases as the collusion intensity increases,

while the SOP decreases as the jamming strength increases.

To further investigate the impact of the SIR threshold for legitimate receivers γ on

the secrecy outage performance, we summarize in Figure 4.7 how the SOP varies with

γ for different collusion intensity M , when n = 30, m = 10, γe = 0.5 and τ = 0.5.

It can be observed from Figure 4.7 that as γ increases the SOP first remain constant

and then decreases. This is mainly due to the reason that there exists some threshold

(e.g., about 0.2 in Figure 4.7) on γ. The transmission is conducted in two hops almost

surely for γ less than this threshold, whereas the probability that the transmission is

suspended in the second hop increases as γ increases beyond the threshold. Therefore,

the eavesdroppers can overhear the source message in two hops at the beginning but

then only in the first hop with an increasing probability as γ increases.

To illustrate the inherent tradeoff between the number of relays n and the noise-
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Figure 4.8: Feasible (n, τ) curve under the constraint of SOP = 0.2, 0.3 and 0.5, for
m = 5, M = 2, γe = 0.5 and γ = 1.0.

generating threshold τ , we summarized in Figure 4.8 the feasible (n, τ) pairs to achieve

a target SOP, under the setting of m = 5, M = 2, γe = 0.5 and γ = 1.0. It can be

observed from Figure 4.8 that the noise-generating threshold τ decreases with the

number of relays n. This means that if more relays nodes are distributed in the

network, a smaller noise-generating threshold is enough to achieve the same target

SOP. A careful observation from Figure 4.8 indicates that as the number of relays n

increases, the SOP is more sensitive to the change of noise-generating threshold τ .

For example, to decrease the SOP from 0.5 to 0.2, an increase of τ from 1.2 to 3.2

is required for n = 10, whereas a much smaller increase of τ (i.e., the increase from

0.378 to 0.515) is enough for n = 30.

4.5 Summary

This chapter conducted theoretical analysis to explore the secrecy outage perfor-

mance of a two-hop wireless network under eavesdropper collusion, where coopera-
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tive jamming is adopted to counteract such attack. Two eavesdropper cases were

considered, i.e., the non-colluding case where eavesdroppers operate independently

and the M-colluding case where any M eavesdroppers combine their observations to

conduct eavesdropping attacks. We first derived the SOP of non-colluding case and

then determined the SOP for M-colluding case by jointly applying the Laplace and

inverse Laplace transform, the keyhole contour integral and the Cauchy Integral The-

orem. Our results indicate that eavesdropper collusion can significantly increase the

possibility of secrecy outage, and thus, deteriorate the security performance of the

concerned network. Another important finding of this paper is that the cooperative

jamming scheme can improve the network security by either distributing more relays

or increasing the noise-generating threshold.
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CHAPTER V

Cooperative Jamming Design in Large-Scale

Wireless Networks

In this chapter, we focus on the cooperative jamming design in large-scale wireless

networks, for which we propose a friendship-based cooperative jamming scheme to en-

sure the security of a finite Poisson Network with one source-destination pair, multiple

legitimate nodes and multiple eavesdroppers distributed according to two indepen-

dent and homogeneous Poisson Point Processes (PPP), respectively. To evaluate the

performances of the proposed jamming scheme, we derive analytical expressions for

the SOP and TOP of the concerned network under two typical cases of the path-

loss exponent, by applying the tools from Stochastic Geometry. Extensive simulation

and numerical results are presented to validate our theoretical analysis as well as to

illustrate the performances of the proposed cooperative jamming scheme.

5.1 Preliminaries and Jamming Scheme

5.1.1 System Model

As illustrated in Figure 5.1, we consider a finite wireless network with nodes dis-

tributed over a bi-dimensional disk B(o,D) ⊂ R2 with radius D. The network consists

of a source S located at the origin o and a destination D at location y0 with fixed
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Figure 5.1: System model: nodes are distributed over a bi-dimensional disk B(o,D)
with radius D. The source S is located at the origin o and the destination D is located
at y0 with ||y0|| = l. Legitimate nodes and eavesdroppers are distributed according
to two independent homogeneous PPPs.

distance ||y0|| = l to the origin o. Also present in the network are multiple legitimate

nodes and multiple eavesdroppers, whose locations are modeled as two independent

and homogeneous PPPs Φ and ΦE with intensities λ and λE, respectively. Through-

out this paper we will use x (z) to denote the random location of a legitimate node

(eavesdropper) as well as the node (eavesdropper) itself. To suppress the eavesdrop-

pers, a set of legitimate nodes will serve as jammers (i.e., J ) to generate random

Gaussian noise. The set of jammer locations is denoted as ΦJ .

We assume all channel suffer from both small-scale Rayleigh fading and large-scale

log-distance path loss with exponent α ≥ 2 [1]. The fading coefficient is constant for

a block of transmission and varies randomly and independently from block to block

for all channels. We assume that the source and jammers transmit with the same

power Pt. Without loss of generality, we assume Pt = 1. The sum interference

caused by the set of jammers at any location y in the network is then given by I(y) =∑
x∈ΦJ

|hx,y|2||x−y||−α, where hx,y and ||x−y|| are the fading coefficient and distance
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between x and y, respectively. Due to the Rayleigh fading assumption, |hx,y|2 is

exponentially distributed and we assume unit mean for |hx,y|2, i.e., E[|hx,y|2] = 1. The

network is assumed interference-limited, and hence, the ambient noise is negligible.

The signal-to-interference ratio (SIR) for the destination D from the source S is then

given by SIRy0 =
|ho,y0 |

2l−α

I(y0)
and the SIR for any eavesdropper z ∈ ΦE is given by

SIRz =
|ho,z |2||z||−α

I(z)
.

5.1.2 Friendship-based Cooperative Jamming

This paper adopts the cooperative jamming technique to ensure the transmission

security. Conventional cooperative jamming schemes usually do not exploit the inher-

ent social behaviors among networks and allow all nodes being jammers equally likely.

In practice, however, some nodes may refuse to serve as jammers, only because that

they have no social relationships with the transmitter. Based on this idea, this pa-

per proposes a friendship-based cooperative jamming scheme (as illustrated in Figure

5.2a) by exploiting the inherent friendship between the source and legitimate nodes.

Different from conventional cooperative jamming schemes, the proposed jamming

scheme aims to allow only the legitimate nodes that are friends of the source to serve

as jammers (see Figure 5.2 for the difference). To model the friendship among net-

work nodes, we adopt the so-called octopus friendship model (see Figure 5.3 ) in [56],

where each node (say A) has not only local friends in a circle (called local friendship

circle) around itself but also N long-range friends randomly selected from the region

outside the local circle. Here, N can be drawn from any given discrete probability

distribution, such as power law, Poisson, geometric or uniform distribution.

Based on the octopus friendship model, the proposed cooperative jamming scheme

is composed of a Local Friendship Circle (LFC) with radius R1 and a Long-range

Friendship Annulus (LFA) with inner radius R1 and outer radius R2, where 0 <

R1 ≤ R2 ≤ D (illustrated in Figure 5.2a). Both the LFC and LFA are centered at
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(a) Conventional (b) Friendship-based

Figure 5.2: Friendship-based vs. conventional cooperative jamming.

Figure 5.3: Octopus friendship model.

the source (i.e., the origin o). We use A1 to denote the LFC and A2 to denote the

LFA. In the proposed jamming scheme, all legitimate nodes in A1 serve as jammers,

while each legitimate node x in A2 serves as a jammer through a location-based policy

P(||x||) ∈ [0, 1]. Notice that different P(||x||) can yield different distributions of long-

range jammers (i.e., different ΦJ ). In this paper, we design three policies P(||x||),
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Figure 5.4: Illustration of long-range jammer selection policy.

which are summarized as follows.

• Policy E: In this policy, each node x ∈ Φ ∩ A2 is selected as a jammer with

Equal probability P (||x||) = p ∈ [0, 1]. This policy corresponds to the scenario

where long-range jammers are uniformly distributed over A2 (see Figure 5.4).

• Policy I: In this policy, each node x ∈ Φ ∩ A2 is selected as a jammer with

probability P (||x||) Increasing with its path loss to the transmitter, i.e.,

P(||x||) = ||x||α −Rα
1

Rα
2 −Rα

1

. (5.1)

This policy corresponds to the scenario where most of the long-range jammers

are distributed near the outer circle of the LFA (see Figure 5.4).

• Policy D: In this policy, each node x ∈ Φ ∩ A2, is selected as a jammer with

probability P (||x||) is Decreasing with its path loss to the transmitter, i.e.,

P(||x||) = Rα
2 − ||x||α

Rα
2 −Rα

1

. (5.2)

This policy corresponds to the scenario where most of the long-range jammers

are distributed near the inner circle of the LFA (see Figure 5.4).
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Remark 3 The policy P(||x||) can be interpreted as a thinning operation on Φ [65].

According to the property of thinning operation, the number of jammers in A2 still

follows a Poisson distribution. Hence, the friendship model in the proposed jamming

scheme is a special case of the one in [56], given that N is drawn from a Poisson

distribution.

5.1.3 Performance Metrics

The impact of friendship-based cooperative jamming scheme on the communi-

cation between the source S and destination y0 is two-edged. On one hand, the

interference generated by the jammers can degrade the eavesdropper channels, which

may greatly enhance the security of the communication. On the other hand, the

source-destination link is also impaired by the unintended interference, resulting in

a probably unreliable communication. To measure the reliability and security of the

source-destination communication, we still use the metrics of TOP and SOP as intro-

duced and defined in Chapter III. In this chapter, the TOP denotes the probability

that the SIR at the destination y0 is below some threshold γ, i.e., SIRy0 < γ and

the SOP denotes the probability that the SIR at one or more eavesdroppers is above

some threshold γe. Formally, the TOP is given by

Pto = P(SIRy0 < γ), (5.3)

and the SOP is given by

Pso = P

( ∪
z∈ΦE

SIRy0 > γe

)
. (5.4)
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5.2 Laplace Transform of Sum Interference

In this section, the Laplace transform of the sum interference I(y) at any location

y ∈ B(o,D) is analyzed for all three long-range jammer selection policies. To make

the analysis mathematically tractable, we focus on two typical path loss scenarios of

α = 2 and α = 4.

According to the definition, the Laplace transform of I(y) is given by

LΞ,α
I(y)(s) = EI(y)

[
e−sI(y)

]
= EΦJ ,{|hx,y |2}

exp
−s

∑
x∈ΦJ

|hx,y|2||x− y||−α


= EΦJ ,{|hx,y |2}

 ∏
x∈ΦJ

exp
(
−s|hx,y|2||x− y||−α

)
= EΦJ

 ∏
x∈ΦJ

E|hx,y |2
[
exp

(
−s|hx,y|2||x− y||−α

)]
= EΦJ

 ∏
x∈ΦJ

1

1 + s||x− y||−α

 , (5.5)

where Ξ = E, I,D denotes the selection policy.

From the cooperative jamming scheme in Section 5.1.2, we can see that ΦJ is

indeed an inhomogeneous PPP obtained by applying two independent thinning op-

erations on Φ. We now define the intensity measure of ΦJ by Λ(·), which gives the

expected number of nodes in a given set. By applying the probability generating

functional of ΦJ , we have
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LΞ,α
I(y)(s) = exp

{
−
∫
B(o,D)

(
1− 1

1 + s||x− y||−α

)
Λ(dx)

}

= exp

−
∫
B(o,D)

(
s

s+ ||x− y||α

)
Λ(dx)︸ ︷︷ ︸

A

 , (5.6)

where Λ(dx) is given by

Λ(dx) =

 λdx, x ∈ A1

λP(||x||)dx, x ∈ A2

, (5.7)

following from the thinning property of PPP. The term A in (5.6) can be rewritten

as

A = λ

∫
A1

(
s

s+ ||x− y||α

)
dx︸ ︷︷ ︸

Bα

+λ

∫
A2

(
s

s+ ||x− y||α

)
P(||x||)dx︸ ︷︷ ︸

Cα

. (5.8)

Changing Cartesian coordinates to polar coordinates, we can rewrite Bα and Cα as

Bα = 2

∫ R1

0

∫ π

0

srdθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)α/2
, (5.9)

and

Cα = 2

∫ R2

R1

∫ π

0

srP(r)dθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)α/2
. (5.10)

5.2.1 The Case of α = 2

In this subsection, we derive the Laplace transform of I(y) for the case of α = 2.

The main results are summarized in the following theorem.
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Theorem V.1 For the case of α = 2, the Laplace transform of the sum interference

I(y) at any location y ∈ B(o,D) under Policy E is given by

LE,2
I(y)(s) = exp

{
− λπs

[
p arcsinh

s+R2
2 − ||y||2

2||y||
√
s

(5.11)

+(1− p) arcsinh
s+R2

1 − ||y||2

2||y||
√
s

− ln

√
s

||y||

]}
,

where λ denotes the intensity of legitimate nodes, R1 denotes the radius of LFC (i.e.,

inner radius of LFA), R2 denotes the outer radius of LFA, arcsinh t = ln(t+
√
t2 + 1)

denotes the inverse hyperbolic sine function. The Laplace transform of I(y) under

Policy I and Policy D is given by

LΞ′,2
I(y)(s) = exp

{
− λπs

[
ΨΞ′

2 (R2, s, ||y||)−ΨΞ′

2 (R1, s, ||y||)

+

(
arcsinh

s+R2
1 − ||y||2

2||y||
√
s

− ln

√
s

||y||

)]}
, (5.12)

where Ξ′ = I and D,

ΨI
2(r, s, ||y||) =

√
(r4+2(s−||y||2)r2+(s+||y||2)2

R2
2−R2

1

− s+R2
1−||y||2

R2
2−R2

1

arcsinh
s+r2−||y||2

2||y||
√
s

,

and

ΨD
2 (r, s, ||y||) =

s+R2
2−||y||2

R2
2−R2

1

arcsinh
s+r2−||y||2

2||y||
√
s

−
√

(r4+2(s−||y||2)r2+(s+||y||2)2
R2

2−R2
1

.

Proof 13 The proof is given in Appendix C.2.

5.2.2 The Case of α = 4

The Laplace transform of I(y) for the case of α = 4 is derived in this subsection.

The main results are summarized in the following theorem.
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Theorem V.2 For the case of α = 4, the Laplace transform of the sum interference

I(y) at any location y ∈ B(o,D) under Policy E is given by

LE,4
I(y)(s) = exp

{
− λπ

√
s

[
π

2
− (1− p) arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

−p arctan
√
s+ ψ(R2, s, ||y||)

η(R2, s, ||y||) +R2
2 − ||y||2

]}
,

where λ denotes the intensity of legitimate nodes, R1 denotes the radius of LFC (i.e.,

inner radius of LFA), R2 denotes the outer radius of LFA,

η(r, s, ||y||) =

√√
(g(r, s, ||y||))2 + 4s(r2 + ||y||2)2 + g(r, s, ||y||)

√
2

,

g(r, s, ||y||) = (r2 − ||y||2)2 − s, (5.13)

ψ(r, s, ||y||) =
√
s(r2 + ||y||2)
η(r, s, ||y||)

, (5.14)

and arctan t is the inverse tangent function. The Laplace transform of I(y) under

Policy I and Policy D is given by

LΞ′,4
I(y)(s) = exp

{
− λπ

√
s

[
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

+ΨΞ′

4 (R2, s, ||y||)−ΨΞ′

4 (R1, s, ||y||)
]}

, (5.15)

76



where Ξ′ = I and D,

ΨI
4(r, s, ||y||) =

2
√
s||y||2

R4
2 −R4

1

ln

[
(η(r, s, ||y||) + r2 − ||y||2)2 + (

√
s+ ψ(r, s, ||y||))2

]
− 1

2(R4
2 −R4

1)

[
(r2 + 3||y||2)ψ(r, s, ||y||)− 3

√
sη(r, s, ||y||)

]
+
s+R4

1 − ||y||4

R4
2 −R4

1

arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2
, (5.16)

and

ΨD
4 (r, s, ||y||) = −2

√
s||y||2

R4
2 −R4

1

ln

[
(η(r, s, ||y||) + r2 − ||y||2)2 + (

√
s+ ψ(r, s, ||y||))2

]
+

1

2(R4
2 −R4

1)

[
(r2 + 3||y||2)ψ(r, s, ||y||)− 3

√
sη(r, s, ||y||)

]
−s+R4

2 − ||y||4

R4
2 −R4

1

arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2
. (5.17)

Proof 14 The proof is given in Appendix C.3.

Corollary 1 For P(r) = 0, as R1 → ∞, the Laplace transform of I(y) for the case of

α = 4 is LΞ,4
I(y)(s) = exp

(
−λ

√
sπ2

2

)
, which recovers the well-known Laplace transform

of I(y) for a homogeneous infinite PPP with α = 4 [66].

Proof 15 Letting P(r) = 0 yields

LΞ,4
I(y)(s) = exp

{
− λπ

√
s

[
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

]}
.

As R1 → ∞,

lim
R1→∞

arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

= arctan
2
√
s

∞− ||y||2
= 0, (5.18)

which completes the proof.
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5.3 Outage Performance

In this section, the TOP and SOP of the proposed cooperative jamming scheme

are analyzed. We focus again on the cases of α = 2 and α = 4. The analysis is based

on the Laplace transforms of the sum interference I(y) derived in Section 5.2. We

first determine the exact expression for the TOP and then obtain both the upper and

lower bounds on the SOP.

5.3.1 Transmission Outage Probability

The TOP can be regarded as a measure of the link reliability between the source S

and destination D. For the Rayleigh fading channel model, the TOP can be directly

derived by applying the Laplace transform of the sum interference at the location of

destination y0 [66]. The following theorem is established to summarize the result of

the TOP.

Theorem V.3 Consider a finite Poisson network with nodes distributed over a bi-

dimensional disk B(o,D) as illustrated in Figure 5.1 and the friendship-based coop-

erative jamming scheme in Section 5.1.2, the TOP of the source-destination pair is

given by

Pto= 1− LΞ,α
I(y0)

(γlα), (5.19)

where Ξ = E, I and D denotes the long-range jammer selection policy, α denotes the

path loss exponent, and the Laplace transform LΞ,α
I(y0)

(γlα) of the sum interference at

the destination y0 is given by (5.11), (5.12), (5.13), (5.15) with ||y0|| = l, s = γlα for

the cases of α = 2 and α = 4, respectively.
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Proof 16 From the definition of TOP in (5.3), we have

Pto = P (SIRy0 < γ)

= P
(
|ho,y0 |2l−α

I(y0)
< γ

)
= EΦJ

[
P
(
|ho,y0 |2l−α

I(y0)
< γ

∣∣ΦJ

)]
= EΦJ

[
P
(
|ho,y0 |2 < γlαI(y0)

∣∣ΦJ
)]

= 1− EI(y0)
[
e−γl

αI(y0)
]

= 1− LΞ,α
I(y0)

(γlα), (5.20)

which completes the proof.

5.3.2 Secrecy Outage Probability

The SOP is a commonly-used performance metric to quantify the PHY security. In

the performance analysis of large-scale systems, the exact SOP is usually unavailable,

mainly due to the reason that the analysis involves computing highly cumbersome

integrals in terms of the PPPs of both legitimate nodes and eavesdroppers. We

therefore resort to obtain the upper and lower bounds on the SOP by applying the

bounding technique used in [67]. We establish the following theorem to summarize

the main results.

Theorem V.4 Consider a finite Poisson network with nodes distributed over a bi-

dimensional disk B(o,D) as illustrated in Figure 5.1 and the friendship-based cooper-

ative jamming scheme in Section 5.1.2, the upper bound on the SOP of the source-

destination pair is given by

PUB
so = 1− exp

{
−2πλE

∫ D

0

LΞ,α
I(z)(γer

α
e )redre

}
, (5.21)
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and the lower bound is given by

P LB
so =

∫ D

0

2λEπre∗exp(−λEπr2e∗)L
Ξ,α
I(z∗)(γer

α
e∗)dre∗ , (5.22)

where λE denotes the intensity of eavesdroppers, γe denotes the minimum required

SIR for eavesdroppers to correctly decode the message, Ξ = E, I and D denotes the

long-range jammer selection policy, α denotes the path loss exponent, z∗ denotes the

eavesdropper nearest to the source o, re∗ denotes the distance between z
∗ and o, and the

Laplace transform LΞ,α
I(z)(γr

α
e ) is given by (5.11), (5.12), (5.13), (5.15) with ||z|| = re,

s = γrαe for the cases of α = 2 and α = 4, respectively.

Proof 17 From the definition of SOP in (5.3), we have

Pso = P

( ∪
z∈ΦE

SIRy0 > γe

)

= 1− P

( ∩
z∈ΦE

SIRz < γe

)

= 1− EΦJ

[
EΦE

[
P

( ∩
z∈ΦE

|ho,z|2||z||−α

I(z)
< γe

∣∣ΦE,ΦJ

)]]
(a)
= 1− EΦJ

[
EΦE

[ ∏
z∈ΦE

P
(
|ho,z|2||z||−α

I(z)
< γe

∣∣ΦE,ΦJ

)]]

= 1− EΦJ

[
EΦE

[ ∏
z∈ΦE

(
1− P

(
|ho,z|2||z||−α

I(z)
> γe

∣∣ΦE,ΦJ

))]]
(b)
= 1− EΦJ

[
exp

{
− λE

∫
B(o,D)

P
(
|ho,z|2||z||−α

I(z)
> γe

∣∣ΦJ

)
dz

}]
, (5.23)

where (a) follows since |ho,z|2, z ∈ ΦE are i.i.d. random variables, and (b) follows from

applying the probability generating functional of ΦE. Applying the Jensen’s Inequality
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yields the upper bound on Pso, we have

Pso ≤ 1− exp

{
− λE

∫
B(o,D)

EΦJ

[
P
(
|ho,z|2||z||−α

I(z)
> γe

∣∣ΦJ

)]
dz

}
= 1− exp

{
−λE

∫
B(o,D)

LΞ,α
I(z)(γe||z||

α)dz

}
= 1− exp

{
−2πλE

∫ D

0

LΞ,α
I(z)(γer

α
e )redre

}
. (5.24)

The lower bound is obtained by considering only the eavesdropper z∗ nearest to

the source S. Let Rz∗ denote the random distance between z∗ and S. The probability

distribution function of Rz∗ can be given by

fRz∗ (re∗) =

2λEπre∗exp(−λEπr2e∗), 0 ≤ re∗ ≤ D

0, otherwise
.

Please refer to Appendix C.4 for the proof. The SOP can then be bounded from below

by the probability that z∗ causes a secrecy outage, i.e.,

Pso ≥ P(SIRz∗ > γe) (5.25)

=

∫ D

0

P
(
|ho,z∗ |2r−αe∗
I(z∗)

> γe

)
fRz∗ (re∗)drz∗

=

∫ D

0

2λEπre∗exp(−λEπr2e∗)L
Ξ,α
I(z∗)(γer

α
e∗)dre∗ .

5.4 Numerical Results and Discussions

In this section, we first conduct extensive simulations to verify the theoretical

analysis of TOP and SOP. We then explore how the parameters of the friendship-

based cooperative jamming scheme affect the TOP and SOP performances of the

legitimate transmission.

81



5.4.1 Simulation Settings

A simulator based on C++ was developed to simulate the PPPs Φ and ΦE, the

friendship-based cooperative jamming model and the transmission process between

the source S and destination D, which is now available at [68]. The PPP Φ (ΦE)

is simulated by applying the method in [65], where the first step is to generate a

Poisson-distributed number N with mean λπD2 (λEπD2 for ΦE) and the second step

is to distribute N nodes uniformly over the network B(o,D). The total number of

source-destination transmissions is fixed as 100000 and the common transmit power is

fixed as 1. The TOP is calculated as the ratio of the number nto of transmissions with

transmission outage to the total transmission number, i.e., TOP = nto

100000
. Similarly,

The SOP is calculated as SOP = nso

100000
, where nso is the number of transmissions

with secrecy outage.

Extensive simulations have been conducted to verify the theoretical analysis of

TOP and SOP. We considered the cases of α = 2 and α = 4 and examined how the

TOP and SOP vary with the density of legitimate nodes λ under three long-range

jammer selection policies E, I and D. For both path loss cases, the network radius

was fixed as D = 30 and the density of eavesdroppers was fixed as λE = 0.001. For

the friendship-based cooperative jamming scheme, the radius of the LFC was fixed as

R1 = 1, the outer radius of the LFA was fixed asR2 = 10 and the selection probability

in Policy E was set as p = 0.1. The SIR thresholds were fixed as γ = 0.5 for the

destinationD and γe = 0.1 for eavesdroppers. The source-destination distance was set

as l = 1. The corresponding simulation results and theoretical results are summarized

in Figure 5.5 and Figure 5.6.

5.4.2 Model Validation

Figure 5.5a and Figure 5.6a indicate clearly that the simulation results of TOP

match nicely with the theoretical ones, so our theoretical results can be applied to
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Figure 5.5: Simulation results vs. theoretical results for TOP and SOP for α = 2.

model the TOP performance of the Poisson networks under Policy E, Policy I and

Policy D for the cases of α = 2 and α = 4. Figures 5.5b, 5.5c, 5.5d, 5.6b, 5.6c and

5.6d indicate that the simulation results of SOP are very close to the corresponding

theoretical upper bounds, while they are different from the lower bounds, so our

theoretical upper bounds can serve as accurate approximations for the exact SOP of

the legitimate transmission under Policy E, Policy I and Policy D for the cases of

α = 2 and α = 4. In the following, we mainly focus on the case of α = 4, as the

behaviors of TOP and SOP for α = 2 and α = 4 are similar. In addition, we use the
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Figure 5.6: Simulation results vs. theoretical results of TOP and SOP for α = 4.

theoretical upper bounds on SOP in the discussions of the SOP performance.

5.4.3 TOP and SOP vs. Jamming Parameters

We now explore how the TOP and SOP performances of the network vary with

the parameters of the friendship-based cooperative jamming scheme with different

long-range jammer selection policies. We first examine the impact of the density of

legitimate nodes λ on the TOP and SOP performances. It can be observed from

Figure 5.5 and Figure 5.6 that the TOP increases as λ increases, while the SOP de-
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creases as λ increases under all policies E, I and D for both α = 2 and α = 4. This

is very intuitive since a larger sum interference can be generated in the network as

λ increases, degrading both the source-destination channel and eavesdropper chan-

nels. As shown in Figure 5.5 and Figure 5.6 in general, Policy I outperforms Policy

D in terms of the TOP performance, while Policy D can ensure a better SOP per-

formance than Policy I. This is due to the following two reasons. The first one is

that Policy D has much more long-range jammers than Policy I, so it will generate

more interference in the network, resulting in a better SOP performance but a worse

TOP performance. The other reason is that the long-range jammers of Policy D are

much closer to the source than those of Policy I. Notice that near (i.e., close to the

source) eavesdroppers dominate the behavior of SOP, so Policy D is more effective

to suppress near eavesdroppers than Policy I, achieving a better SOP performance.

Notice that in Figure 5.5 and Figiure 5.6, the jammer selection probability of Pol-

icy E is fixed as p = 0.1, which corresponds to a weak long-range jamming scenario.

For the moderate long-range jamming scenario (p = 0.5) and strong long-range jam-

ming scenario (p = 1.0), Figure 5.7 shows TOP and SOP vs. λ for α = 4. As shown

in Figure 5.7 that the behaviors of TOP and SOP are similar for different p. One can

also observe from Figure 5.7 that the TOP increases as p increases, while the SOP

decreases as p increases. This indicates that we can flexibly control the TOP and SOP

performances of Policy E by varying the long-range jammer selection probability p.

5.4.3.1 TOP and SOP vs. R1

We now investigate how the TOP and SOP performances are affected by the

radius of LFC R1, i.e., the inner radius of LFA. For the scenario of R2 = 10, D = 30,

γ = 0.5, λ = 0.1, l = 2 and α = 4, Figure 5.8a illustrates how the TOP varies with

R1 for Policy I, Policy D and Policy E with p = 0.5. We can see from Figure 5.8a

that the TOP first increases as R1 increases, then saturates to a constant value and
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Figure 5.7: Impact of p on TOP and SOP for Policy E.

finally stays almost the same for Policy I and Policy E. Actually, this is also the

case for Policy D. The increasing behavior of TOP is because that the total number

of jammers increases as R1 increases, although the number of long-range jammers
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Figure 5.8: Impact of R1 on TOP and SOP.

decreases, which results in a larger sum interference in the network. The behavior

that TOP of all policies saturates to a same constant is due to the fact that all policies

finally reach to the same jamming pattern at the point of R1 = R2. For the scenario
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of R2 = 10, D = 30, γe = 0.1, λE = 0.001, λ = 0.1 and α = 4, Figure 5.8b shows

how the SOP varies with R1 for Policy I, Policy D and Policy E with p = 0.5. It

can be observed from Figure 5.8b that the SOP first decreases as R1 increases, then

saturates to a constant value and finally stays almost the same for all policies. This

is due to the same reason as explained above.

5.4.3.2 TOP and SOP vs. R2

Regarding the impact of the outer radius of LFA R2 on the TOP performance,

we show in Figure 5.9a how the TOP varies with R2 for Policy I, Policy D and

Policy E with p = 0.5 under the settings of R1 = 1, D = 30, γ = 0.5, λ = 0.1,

l = 2 and α = 4. As shown in Figure 5.9a that the TOP of Policy E and Policy D

always monotonically increases as R2 increases, but this is not the case for Policy I.

The increasing behavior of TOP for all policies are because that the number of long-

range jammers increases as R2 increases, generating a larger sum interference in the

network. The decreasing behavior of TOP for Policy I is due to that its long-range

jammers are getting further away from the destination as R2 continues to increase,

since these jammers are mainly located in a small annulus region near R2. For the

impact of R2 on the SOP performance, we illustrate in Figure 5.9b SOP vs. R2 for

Policy I, Policy D and Policy E with p = 0.5 under the settings of R1 = 1, D = 30,

γe = 0.1, λE = 0.001, λ = 0.1 and α = 4. As expected, we can observe from Figure

5.9b that the SOP decreases as R2 increases for all policies.

5.5 Summary

This chapter explored the physical layer security-based secure communications

in a finite Poisson network with social friendships among nodes, for which a social

friendship-based cooperative jamming scheme is proposed. The jamming scheme con-

sists of a Local Friendship Circle (LFC) and a Long-range Friendship Annulus (LFA),

88



2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Policy I

Policy E, p = 0.5

Policy D

 R1 = 1, D  = 30,  = 0.5, l = 2,  = 4

 Outer radius of Long-range Friendship Annulus, R2

Tr
an

sm
is

si
on

 O
ua

tg
e 

Pr
ob

ab
ili

ty

(a) TOP vs. R2

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Policy I
 Policy D
 Policy E, p = 0.5

R1 = 1, D = 30, e = 0.1, e = 0.001, 

Se
cr

ec
y 

O
ua

tg
e 

Pr
ob

ab
ili

ty

Outer radius of Long-range Friendship Annulus, R2

(b) SOP vs. R2

Figure 5.9: Impact of R2 on TOP and SOP.

where all legitimate nodes in the LFC serve as jammers, but the legitimate nodes in

the LFA are selected as jammers through three location-based policies, namely, Policy

E, Policy I and Policy D. To understand the security and reliability performances of
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the proposed jamming scheme, we analyzed its TOP and SOP based on the Laplace

transforms of the sum interference at any location in the network. The results in this

paper indicated that, in general, Policy I outperforms Policy D in terms of the re-

liability performance, while Policy D can ensure a better security performance than

Policy I. Also, we can flexibly control the reliability and security performances of

Policy E by varying its long-range jammer selection probability. An interesting ob-

servation from the results in this paper showed that increasing the outer radius of

the LFA beyond some threshold under Policy I can improve both the reliability and

security performances of the proposed jamming scheme.
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CHAPTER VI

Conclusion

In this thesis, we studied the PHY security performances of wireless networks,

where the PHY security technique of cooperative jamming is adopted to ensure secure

communications. We first explored the PHY security performance of small-scale

wireless networks with non-colluding eavesdroppers, and then investigated the PHY

security performance of small-scale wireless networks with colluding eavesdroppers.

Finally, we examined the cooperative jamming design issue in large-scale wireless

networks.

For the PHY security performance of small-scale wireless networks with non-

colluding eavesdroppers, we studied in Chapter III the eavesdropper-tolerance capa-

bility (ETC) of a two-hop wireless network with one source-destination pair, multiple

relays and multiple on-colluding eavesdroppers. We first theoretically analyzed the

secrecy outage probability (SOP) and transmission outage probability (TOP) of a two-

hop relay wireless network with cooperative jamming under two relaying schemes, i.e.,

random relaying and opportunistic relaying. Based on the SOP and TOP results, we

then determined the ETC of both schemes. The main results in Chapter III showed

that cooperative jamming is an effective technique to provide security for wireless

communications. In addition, we found that the opportunistic relaying scheme can

achieve a much better ETC performance, which is usually orders of magnitude more
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than that ensured by the random relaying scheme.

For the PHY security performance of small-scale wireless networks with colluding

eavesdroppers, we investigated in Chapter IV the SOP of a two-hop wireless network

with one source-destination pair, multiple relays and multiple colluding eavesdrop-

pers. We consider two eavesdropper scenarios to depict the behavior of eavesdroppers,

i.e., non-colluding scenario where eavesdroppers do not collude and operate indepen-

dently and M-colluding scenario whereM eavesdroppers can collude to exchange and

combine the received signals so as to improve the successful decoding probability. We

first derive the analytical expression for the SOP under the non-colluding scenario,

we then derive the SOP under the M-colluding scenario by applying the techniques

of Laplace transform, keyhole contour integral and Cauchy Integral Theorem. The

results in this chapter showed that eavesdropper collusion can significantly increase

the possibility of secrecy outage, and thus, deteriorate the security performance of

the concerned network.

In Chapter V, we addressed the cooperative jamming design issue in large-scale

wireless networks, for which proposed a friendship-based cooperative jamming scheme

to ensure the secure transmission of a finite Poisson network with one source-destination

pair, multiple legitimate nodes and multiple eavesdroppers, whose locations are mod-

eled by two independent and homogeneous Poisson Point Processes, respectively. The

jamming scheme comprises an LFC and an LFA, where all legitimate nodes in the LFC

serve as jammers, and three location-based policies (i.e, Policy E, Policy I and Policy

D) are designed to select legitimate nodes in the LFA as jammers. The analytical ex-

pressions for the SOP and TOP were also derived to evaluate the performances of the

proposed scheme. The results in this paper indicated that, in general, Policy I out-

performs Policy D in terms of the reliability performance, while Policy D can ensure

a better security performance than Policy I. Also, we can flexibly control the reliabil-

ity and security performances of Policy E by varying its long-range jammer selection
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probability. An interesting observation from the results in this paper demonstrated

that increasing the outer radius of the LFA beyond some threshold under Policy I

can improve both the reliability and security performances of the proposed jamming

scheme.

It is notable that, this thesis considers a relatively simple block Rayleigh fading

channel model where channel gains remain constant during a block of time. In prac-

tice, however, the channel may vary very fast even for a small time block. So, one of

the interesting and important future work is to study the PHY security performances

of wireless networks under more practice channel models.
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APPENDIX A

Proofs in Chapter III

A.1 Proof of Lemma 1 and 2

Proof of Lemma 1 : From the transmission protocol and the i.i.d fading as-

sumption, we can easily see that I1 and I2 are the sum of random variables which are

smaller than τ among n−1 i.i.d random variables and thus I1 and I2 are independent

and identically distributed. Now we take I1 for example to determine the distribution

of the total interference in both hops. By using the function U(x) = 1x<τ (x) ·x in the

proof of Theorem III.1, we can rewrite I1 =
∑n

j=1,j ̸=b U(|hRj ,Rb
|2). The mean and vari-

ance of the mixed-type random variable U(|hRj ,Rb
|2) can be given by µ1 = 1−(1+τ)e−τ

and σ2
1 = 1− τ 2e−τ − (1 + τ)2e−2τ . Therefore, the pdf of I1 can be recursively given

by the following mixed density and mass function

f(x) =


e−(n−1)τ , x = 0

pn−1(x)e
−x, 0 < x ≤ (n− 1)τ

0, otherwise,
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where pn−1(x) is a piecewise function and coincides with different polynomial functions

of degree at most n − 2 on each interval (kτ, (k + 1)τ ] for 0 ≤ k ≤ n − 2. However,

it is quite difficult to determine the function pn−1(x), especially for large n. Thus,

we approximate I1 by a normal random variable with mean µ = (n − 1)µ1 and

variance σ2 = (n − 1)σ2
1, according to the Central Limit Theorem and its pdf can

be approximated by f(x) ≈ f̂(x) = e
− (x−µ)2

2σ2

σ
√
2π

where µ = (n − 1)
[
1 − (1 + τ)e−τ

]
and

σ =

√
(n− 1)

[
1− τ 2e−τ − (1 + τ)2e−2τ

]
.

Proof of Lemma 2: Before deriving the probability in Lemma 2, we first define

the event that relay Rk, k = 1, · · · , n is selected as the message relay by Ak (i.e.,

b = k). Besides, we use a new random variable Sj to define min{|hS,Rj
|2, |hRj ,D|2} for

each relay Rj. It is notable that Sj, j = 1, · · · , n is an exponential random variable

with mean 1
2
. Then, we have Ak

∆
=
∩n
j=1,j ̸=k (Sj ≤ Sk).

Now, applying the law of total probability, we have

P
(
|hS,Rb

|2 ≥ x, |hRb,D|2 ≥ y
)

(A.1)

=
n∑
k=1

P
(
|hS,Rk

|2 ≥ x, |hRk,D|2 ≥ y, Ak
)

=
n∑
k=1

P

(
|hS,Rk

|2 ≥ x, |hRk,D|2 ≥ y,

n∩
j=1,j ̸=k

(Sj ≤ Sk)

)

=
n∑
k=1

∫ ∞

0

P

(
|hS,Rk

|2 ≥ x, |hRk,D|2 ≥ y, Sk = s,
n∩

j=1,j ̸=k

(Sj ≤ s)

)
ds

=
n∑
k=1

∫ ∞

0

P
(
|hS,Rk

|2 ≥ x, |hRk,D|2 ≥ y, Sk = s
)
P

(
n∩

j=1,j ̸=k

(Sj ≤ s)

)
ds

=
n∑
k=1

∫ ∞

0

P
(
|hS,Rk

|2 ≥ x, |hRk,D|2 ≥ y, Sk = s
)
(1− e−2s)n−1ds,
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When x ≥ y ≥ 0, (A.1) can be reduced to

P
(
|hS,Rb

|2 ≥ x, |hRb,D|2 ≥ y
)

(A.2)

=
n∑
k=1

{∫ ∞

x

P
(
|hS,Rk

|2 = s, |hRk,D|2 ≥ s
)
(1− e−2s)n−1ds

+

∫ x

y

P
(
|hS,Rk

|2 > x, |hRk,D|2 = s
)
(1− e−2s)n−1ds

+

∫ ∞

x

P
(
|hS,Rk

|2 > s, |hRk,D|2 = s
)
(1− e−2s)n−1ds

}

= 2n

∫ ∞

x

(1− e−2s)n−1

e2s
ds+ ne−x

∫ x

y

(1− e−2s)n−1

es
ds

= 1− (1− e−2x)n + ne−x
∫ e−y

e−x

(1− t2)n−1dt

= 1− (1− e−2x)n + ne−x
[
φ(n, y)− φ(n, x)

]
,

where φ(n, x) = e−x2F1

(
1
2
, 1− n; 3

2
; e−2x

)
and 2F1 is the Gaussian hypergeometric

function. Similarly, when 0 ≤ x < y, (A.1) can be reduced to

P
(
|hS,Rb

|2 ≥ x, |hRb,D|2 ≥ y
)
= 1− (1− e−2y)n + ne−y

[
φ(n, x)− φ(n, y)

]

Combining (A.2) and (A.3), Lemma 2 then follows.
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APPENDIX B

Proofs in Chapter IV

B.1 Proof of Lemma 7

It can be seen from the definition of event A that

pA|J l
1
= P

(
γS,Rb

< γ
∣∣J l1) = P

(
|hS,Rb

|2 < γ
∑
j∈J1

|hRj ,Rb
|2
∣∣J l1
)
.

Hence, we first need to determine the distribution of |hS,Rb
|2. Definemin{|hS,Rk

|2, |hRk,D|2}

for each relay Rk, k = 1, · · · , n by Tk and the event that relay Rk announces itself as

the message relay by Bk (i.e., b = k). It is easy to see that Bk
∆
=
∩n
j=1,j ̸=k (Tj ≤ Tk),

and all Tk’s are i.i.d. and exponential random variables with mean 1/2. Thus, apply-
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ing the law of total probability, we have

P (|hS,Rb
|2 < x) (B.1)

=
n∑
k=1

P
(
|hS,Rk

|2 < x,Bk

)
=

n∑
k=1

P

(
|hS,Rk

|2 < x,

n∩
j=1,j ̸=k

(Tj ≤ Tk)

)

=
n∑
k=1

∫ ∞

0

P

(
|hS,Rk

|2 < x,
n∩

j=1,j ̸=k

(Tj ≤ t) , Tk = t

)
dt

=

∫ ∞

0

nP
(
|hS,Rk

|2 < x, Tk = t
)
(1− e−2t)n−1dt.

Again, by the law of total probability, we have

P
(
|hS,Rk

|2 < x, Tk = t
)

(B.2)

=


P (|hS,Rk

|2 = t, |hRk,D|2 > t)

+P (t < |hS,Rk
|2 < x, |hRk,D|2 = t) , 0 ≤ t ≤ x

0, otherwise

=

e
−t(2e−t − e−x), 0 ≤ t ≤ x

0, otherwise.

Hence, after substituting (B.2) into (B.1) and conducting some algebraic manipula-

tion, we have

P (|hS,Rb
|2 < x) =

n∑
k=0

(
n

k

)
(−1)k

ke−x + (k − 1)e−2kx

2k − 1
. (B.3)

Next, the probability distribution of |hRj ,Rb
|2 for any j ∈ J1 can be given by

f|hRj,Rb
|2(x) =


e−x

1−e−τ , 0 ≤ x < τ

0, x ≥ τ
. (B.4)
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Hence, we have

pA|J l
1
= E{|hRj,Rb

|2,j∈J1}

[
n∑
k=0

(
n

k

)
(−1)k

1

2k − 1
(B.5)

(
ke−γ

∑
|hRj,Rb

|2 + (k − 1)e−2kγ
∑

|hRj,Rb
|2
) ∣∣∣∣J l1

]

=
n∑
k=0

(
n

k

)
(−1)k

1

2k − 1

(
kE
[
e−γ

∑
|hRj,Rb

|2 |J l1
]

+(k − 1)E
[
e−2kγ

∑
|hRj,Rb

|2 |J l1
])

=
n∑
k=0

(
n

k

)
(−1)k

1

2k − 1

[
k

(
1− e−(1+γ)τ

(1− e−τ )(1 + γ)

)l
+(k − 1)

(
1− e−(2kγ+1)τ

(1− e−τ )(2kγ + 1)

)l ]
.
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APPENDIX C

Proofs in Chapter V

C.1 Integral Identities

Identity 1 For a, b ∈ R and a > |b|, we have from [69] and [70]

∫ π

0

dθ

(a+ b cos θ)n+1
=
πPn(

a√
a2−b2 )

(a2 − b2)
n+1
2

, (C.1)

where Pn(·) is the nth-Legendre polynomial and P0(·) = 1 .

Identity 2 Let a, b, c ∈ R and c > 0. Defining Q = ct2 + bt + a and ∆ = 4ac − b2,

we have from [69] and [70]

∫
dt√
Q

=
1√
c
ln(2

√
cQ+ 2ct+ b) [c > 0]

=
1√
c
arcsinh

2ct+ b√
∆

[c > 0,∆ > 0], (C.2)
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Identity 3 For m,n ∈ Z and Q = ct2 + bt+ a, we have from [69]

∫
tm√
Q2n+1

dt =
tm−1

(m− 2n)c
√
Q2n−1

− (2m− 2n− 1)b

2(m− 2n)c

∫
tm−1√
Q2n+1

dt

− (m− 1)a

(m− 2n)c

∫
tm−2√
Q2n+1

dt, (C.3)

where a, b, c ∈ R and c > 0.

C.2 Proof of Theorem V.1

For α = 2, we can rewrite Bα as

B2 = 2

∫ R1

0

∫ π

0

srdθdr

s+ r2 + ||y||2 − 2r||y|| cos θ
. (C.4)

Applying Identity 1 in Appendix C.1, we have

B2 = πs

∫ R1

0

2rdr√
r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2

t↔r2
= πs

∫ R2
1

0

dt√
(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

, (C.5)

We then apply Identity 2 in Appendix C.1 and substitute t with r2 to obtain

B2 = πs

(
arcsinh

s+R2
1 − ||y||2

2||y||
√
s

− ln

√
s

||y||

)
. (C.6)

Similarly, applying Identity 1, we can rewrite Cα as

C2 = πs

∫ R2

R1

2rP (r)dr√
r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2

. (C.7)
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For Policy E, P (r) = p. Then, we have

C2 = pπs arcsinh
s+ r2 − ||y||2

2||y||
√
s

∣∣∣∣R2

r=R1

. (C.8)

Substituting (C.8) and (C.6) into (5.9) in Section 5.2, and then substituting (5.9) into

(5.8) yields the Laplace transform of I(y) under Policy E for α = 2.

Next, P (r) can be written as P (r) = u + vr2, where u = − R2
1

R2
2−R2

1
, v = 1

R2
2−R2

1
for

Policy I, and u =
R2

2

R2
2−R2

1
, v = − 1

R2
2−R2

1
for Policy D. Hence,

C2 = πs

∫ R2

R1

2r(u+ vr2)dr√
r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2

= πs

∫ R2
2

R2
1

(u+ vt)dt√
(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

= πs

[
u

∫ R2
2

R2
1

dt√
(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

+v

∫ R2
2

R2
1

tdt√
(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

]
t↔r2
= πs

[
(u− vs+ v||y||2) arcsinh s+ t− ||y||2

2||y||
√
s

+v
√
(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

]∣∣∣∣R2
2

t=R2
1

, (C.9)

Substituting t with r2, we have

C2 = πs

[
(u− vs+ v||y||2) arcsinh s+ r2 − ||y||2

2||y||
√
s

(C.10)

+v
√

(r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2
]∣∣∣∣R2

r=R1

.

Finally, we substitute (C.6) and (C.10) into (5.9) in Section 5.2, and then substi-

tute (5.9) into (5.8) to obtain the Laplace transform of I(y) under Policy I and Policy

D for α = 2.
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C.3 Proof of Theorem V.2

For α = 4, we can rewrite Bα as

B4 = 2

∫ R1

0

∫ π

0

srdθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)2

= 2

∫ R1

0

√
sr

2i

∫ π

0

dθdr

(r2 + ||y||2 − 2r||y|| cos θ − i
√
s)

− dθdr

(r2 + ||y||2 − 2r||y|| cos θ + i
√
s)

(C.11)

Applying Identity 1, we have B4 = π
√
s

2i

∫ R1

0
2rdr√
C1

− 2rdr√
C2

and applying Identity 2, we

have B4 =
π
√
s

2i
ln

√
C1+r2−(i

√
s+||y||2)√

C2+r2+(i
√
s−||y||2)

∣∣∣∣R1

r=0

where C1 = (r2 − ||y||2)2 − s− 2i
√
s(r2 + ||y||2)

and C2 = C∗
1 is the complex conjugate of C1. Now, we rewrite C1 as

C1 = (η − iψ)2 = η2 − ψ2 − 2iηψ, (C.12)

for some real-valued functions η(r, s, ||y||) and ψ(r, s, ||y||). For the simplicity of

notation, we also use η and ψ to represent η(r, s, ||y||) and ψ(r, s, ||y||), respectively.

We can then establish the following equation systemη
2 − ψ2 = (r2 − ||y||2)2 − s

ηψ =
√
s(r2 + ||y||2).

(C.13)
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The functions η and ψ can be obtained by solving the above equation system. Given

C1 as in (C.12),

B4 =
π
√
s

2i
ln
η + r2 − ||y||2 − i(

√
s+ ψ)

η + r2 − ||y||2 + i(
√
s+ ψ)

∣∣∣∣R1

r=0

(C.14)

=
π
√
s

2i
ln

1− i
√
s+ψ

η+r2−||y||2

1 + i
√
s+ψ

η+r2−||y||2

∣∣∣∣R1

r=0

= −π
√
s arctan

√
s+ ψ

η + r2 − ||y||2

∣∣∣∣R1

r=0

= π
√
s

(
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

)
,

where the last step follows from

lim
r→0

arctan

√
s+ψ(r, s, ||y||)

η(r, s, ||y||)+r2−||y||2
=lim
r→0

arctan

√
s+

√
2s

||y||2+r2−||y||2
=arctan∞=

π

2
.

Similarly, applying Identity 1, we can rewrite Cα as

C4 =
π
√
s

2i

∫ R2

R1

2rP (r)dr√
C1

− 2rP (r)dr√
C2

, (C.15)

For Policy E, P (r) = p ∈ [0, 1]. Then,

C4 = −pπ
√
s arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2

∣∣∣∣R2

r=R1

. (C.16)

Substituting (C.16) and (C.14) into (5.9) in Section 5.2, and then substituting (5.9)

into (5.8) yields the Laplace transform of I(y) under Policy E for α = 4.

Next, P (r) can be written as P (r) = u + vr4, where u = − R4
1

R4
2−R4

1
, v = 1

R4
2−R4

1
for
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Policy I, and u =
R4

2

R4
2−R4

1
, v = − 1

R4
2−R4

1
for Policy D . Hence,

C4 =
π
√
s

2i

∫ R2

R1

2r(u+ vr4)dr√
C1

− 2r(u+ vr4)dr√
C2

dr

t↔r2
=

π
√
s

2i

∫ R2

R1

(u+ vt2)dt√
t2 − 2(i

√
s+ ||y||2)t+ (||y||2 − i

√
s)2

− (u+ vt2)dt√
t2 + 2(i

√
s− ||y||2)t+ (||y||2 + i

√
s)2

, (C.17)

Next, we have

∫
(u+ vt2)dt√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

= u

∫
dt√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

+v

∫
t2dt√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

(g)
=
v

2
(r2 + 3||y||2 + 3i

√
s)(η − iψ)

+(u+ v||y||4 − vs+ i4v
√
s||y||2) ln

[√
C1 + r2 − (i

√
s+ ||y||2)

]
, (C.18)

where the last step follows after applying Identity 3 in Appendix C.1 and substituting

t with r2. Similarly, we have

∫
(u+ vt2)dt√

t2 + 2(i
√
s− ||y||2)t+ (||y||2 + i

√
s)2

=
v

2
(r2 + 3||y||2 − 3i

√
s)(η + iψ)

+(u+ v||y||4 − vs− i4v
√
s||y||2) ln

[√
C2 + r2 − (i

√
s+ ||y||2)

]
. (C.19)

Thus, substituting (C.18) and (C.19) into (C.17) and then conducting some alge-

110



braic manipulations yields

C4 = 2πvs||y||2 ln
[
(η(r, s, ||y||) + r2 − ||y||2)2 + (

√
s+ ψ(r, s, ||y||))2

]
(C.20)

−π
√
s

{
v

2

[
(r2 + 3||y||2)ψ(r, s, ||y||)− 3

√
sη(r, s, ||y||)

]

+(u+ v||y||4 − vs) arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2

}∣∣∣∣∣
R2

r=R1

.

Finally, we substitute (C.14) and (C.20) into (5.9) in Section 5.2, and then sub-

stitute (5.9) into (5.8) to obtain the Laplace transform of I(y) under Policy I and

Policy D for α = 4.

C.4 Probability Density Function of Rz∗

The complementrary cdf of F̄Rz∗ (re∗) of the random distance Rz∗ equals the prob-

ability that no eavesdroppers are in B(o, re∗) for 0 ≤ re∗ ≤ D. Hence, the cdf of Rz∗

is given by

FRz∗ (re∗) = 1− F̄Rz∗ (re∗)

= 1− P (ΦE(B(o, re∗)) = 0)

= 1−
∞∑
n=0

P
(
ΦE(B(o, re∗)) = 0

∣∣ΦE(B(o,D)) = n
)
P(ΦE(B(o,D)) = n)

= 1−
∞∑
n=0

(
1− r2e∗

D2

)n
(λeπD

2)nexp(−λeπD2)

n!

= 1− exp(−λeπD2)
∞∑
n=0

(
1− r2e∗

D2

)n
(λeπD

2)n

n!

= 1− exp(−λeπD2)exp

[(
1− r2e∗

D2

)
λeπD

2

]
= 1− exp(−λeπr2e∗), (C.21)
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for 0 ≤ re∗ ≤ D. Therefore, the pdf of Rz∗ is given by

fRz∗ (re∗) =

2λeπre∗exp(−λeπr2e∗), 0 ≤ re∗ ≤ D

0, otherwise
.
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