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Abstract

When we see a stimulus of a radial flow field (the target flow) over-

lapped with a lateral flow field or another radial flow field, the focus

of expansion (FOE) of the target radial flow appears to be shifted in

a direction. Royden and Conti [(2003) Vision Research, 43, 2811-26]

argued that local motion subtraction is crucial for explanation of this

phenomenon. The flow field which causes the illusory displacement of

FOE was computationally analyzed. It was shown that the flow field is

approximately a rigid-motion flow; the flow can be generated by simu-

lating a situation where an observer moves toward a stationary scene.

The heading direction for the observer corresponds to the perceived

position of the FOE of the radial flow pattern. It implies that any

algorithms which assume rigidity of the scene and recover veridical

heading explain the bias in perceived FOE. There is no need for local

motion subtraction in order to explain the phenomena. Furthermore,

the flow for an observer’s translation in the presence of objects moving

laterally or in depth was computationally analyzed. It was found that

algorithms which minimizes standard error functions with less weights

to the independently moving objects show similar biases in recovered

heading to the bias of human observers. It implies that local motion

subtraction is not necessary for explanation of the bias in perceived

heading due to an object moving laterally or in depth, contrary to the

argument of Royden [(2002) Vision Research, 42, 3043-58].
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1 Introduction

When we see a stimulus of a radial flow field overlapped with a lateral flow

field, the focus of expansion (FOE) of the radial flow appears to be shifted

in the direction of the lateral motion (Duffy & Wurtz, 1993; Grico & Lappe,

1998; Pack & Mingolla, 1998). Two explanations have been proposed for the

phenomena. One is that motion opposite to the lateral movement is induced

to the radial flow, and the induced motion displaces the FOE (Meese, Smith,

& Harris, 1995). The other is that since the flow field of a radial flow plus

a lateral flow is very similar to the flow caused by an observer’s forward

movement toward a front-parallel plane and an extremely distant plane, the

visual system compensates for the lateral flow as a flow due to eye move-

ment and recover the true FOE of the head-centered flow (Duffy & Wurtz,

1993; Lappe & Rauschecker, 1995). Recently Royden and Conti (2003) have

proposed that Royden’s model of heading perception using motion-opponent

operators explains the illusory transformation of the optic flow field; the

heading direction recovered by the model is consistent with the perceived

FOE of the radial flow pattern. Since motion-opponent operators differenti-

ate the velocity field locally, their explanation is similar to the explanation

of induced motion by lateral motion in a sense. Also, since the model was

developed to model heading perception, their explanation can be regarded as
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explanation in terms of heading recovery with compensation for the lateral

flow due to eye movement.

Royden and Conti (2003) demonstrated another illusory transformation of

the optic flow. When a radial flow is overlapped with another radial flow, the

FOE of the first flow appears to be shifted. The direction of the displacement

depends on ratio of the simulated depth of the plane for the first flow to the

simulated depth of the plane for the second flow. They argued that because

the radial flow pattern cannot be generated by eye movement alone, the

bias in perceived FOE could not be explained by compensation for the flow

due to eye movement. Furthermore, they showed that the heading direction

recovered by Royden’s (1997) model of heading perception using motion-

opponent operators is consistent with the bias in perceived FOE. Royden

and Conti (2003) emphasized that local motion subtraction is crucial for

explanation of the new illusion.

Indeed, the radial flow cannot be generated by eye movement. However,

it does not mean that the flow does not occur when an observer moves in

the rigid environment. We will show that the two-FOE flow can be approxi-

mately generated by simulating a situation where an observer moves toward

two stationary planes with eye movement. In other words, the two-FOE flow

is approximately a flow generated by rigid motion. The heading direction is

located at a position displaced from the FOE of the first radial flow. The dis-
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placement direction is consistent with the bias direction for human observers.

Note two facts that Royden’s model of heading perception computes heading

reliably (Royden, 1997) and that the two-FOE flow field is a rigid-motion

flow. They imply that her model simply computes the heading direction

for the two-FOE flow. The other heading recovery models which assume

rigidity of the scene and find veridical heading can also explain the new illu-

sory transformations of the optic flow field. The purpose of the study is to

show that local motion subtraction is not necessary to explain the illusory

transformations of the optic flow field, and that the phenomena should be

ascribed to heading estimation from two-FOE flows. Thus, heading models

which estimate heading reliably can explain them.

The stimulus simulating a situation where an observer translates and ob-

jects moves laterally is a radial flow plus a lateral flow within a restricted

region. The flow is similar to the flow for the illusory transformation of

the optic flow field. The flow generated by simulating a situation where an

observer translates and objects moves in depth has the two foci of expan-

sion. It is similar to the flow for the Royden and Conti’s (2003) illusory

transformation of the optic flow field. Royden and Hildreth (1996) exam-

ined heading perception with objects moving laterally or moving in depth.

The perceived heading was displaced from the FOE, and the bias direction

was consistent with the illusory translation of the optic flow field. Royden
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(2002) also showed that her heading perception model using motion-opponent

operators (Royden, 1997) explains heading perception with objects moving

laterally and moving in depth. Royden (2002) raised a question that other

models of heading perception such as a neural network model of Lappe and

Rauschecker (1993) and a gain-filed model of Beintema and van den Berg

(1998) shows a similar bias to the bias for human observers due to an object

moving in depth. We will also address the question in this paper. However,

we will not test specific heading models directly. Instead, we will show that

algorithms which minimizes standard error functions with less weights to the

independently moving objects show similar bias in perceived heading due to

moving objects. It implies that the bias in perceived heading due to moving

objects should be also attributed to heading estimation from the flow fields

and that most of the heading perception models can explain it.

2 Computational analysis of an illusory trans-

formation of the optic flow field

2.1 Computational analyses of a radial flow with a lat-
eral flow

We analyze the flow field for an illusory transformation of the optic flow, and

show that the flow can be approximately generated by rigid motion.

We make use of essentially the same notation as Longuet-Higgins and
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Prazdny (1980). We use a coordinate system that is fixed with respect to

an observer. The translation of the observer in the rigid environment is

expressed in terms of translation along three orthogonal directions, which

we denote by the vector (U, V,W ). U , V and W show translation along

the X-axis, Y-axis and Z-axis respectively (Fig. 1). The Z-axis is directed

along the optical axis, and the X-axis and Y-axis are horizontal and vertical

respectively. The rotation of the observer is expressed in terms of rotation

around three orthogonal axes, which we express by the vector (A,B,C). A,

B and C indicate rotation around the X-axis, the Y -axis and the Z-axis,

respectively (Fig. 1). The 3-D velocity of a point, (X, Y, Z) is given by:

Ẋ = −U −BZ + CY (1)

Ẏ = −V − CX + AZ (2)

Ż = −W − AY +BX (3)

where (Ẋ, Ẏ , Ż) ≡ (dX/dt, dY/dt, dZ/dt) (Longuet-Higgins and Prazdny

1980). If we consider perspective projection of the velocity onto the im-

age plane Z = 1 for the projection, point P on the image (x, y) is given

by

x = X/Z (4)

y = Y/Z (5)

The projected velocity (u, v) ≡ (ẋ, ẏ) ≡ (dx/dt, dy/dt) in the image plane is

7



Figure 1: Insert the figure about here.

given by (Longuet-Higgins and Prazdny 1980)

u =
−U + xW

Z
−B + Cy + Axy −Bx2 (6)

v =
−V + yW

Z
− Cx+ A+ Ay2 −Bxy (7)

We consider situations where an observer translates without eye rotation

around the line of sight, i.e., C = 0. Suppose that the observer moves toward

a frontal plane with depth of Z1 and an infinitely distant plane. For an image

point (x1, y1) with depth of Z1, the image velocity (u1, v1) is given by

u1 =
−U + x1W

Z1

−B + Ax1y1 −Bx21 (8)

v1 =
−V + y1W

Z1

+ A+ Ay21 −Bx1y1 (9)

Since the quadratic terms about x1 and y1 are small for moderate x1 and y1,

we neglect them 1.

u1 ≈ −U + x1W

Z1

−B (10)

v1 ≈ −V + y1W

Z1

+ A (11)

1Humans do not seem to notice the difference between the original and approximate
flows at least up to a display size of 45 deg × 35 deg according to the data about heading
perception toward a fronto-parallel plane (Grigo & Lappe, 1999; Warren & Hannon, 1990).
The display size of the experiments of Royden and Conti (2003) was 25 deg × 25 deg.
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The equations imply that the velocity pattern for the plane with depth of

Z1 is a radial pattern, whose center is (U/W +BZ1/W, V/W −AZ1/W ) =

(U/W + Bτ1, V/W − Aτ1), where τ1 = Z1/W is time to contact of the

plane. The center of the radial flow is displaced from the heading point

(U/W, V/W ) by (Bτ1,−Aτ1).

For a point with infinite distance (Z = ∞), the velocity (u2, v2) on the

image point (x2, y2) is given by

u2 = −B + Ax2y2 −Bx22 (12)

v2 = A+ Ay22 −Bx2y2 (13)

Again we neglect the quadratic terms about x2 and y2.

u2 ≈ −B (14)

v2 ≈ A (15)

The equations imply that the flow field for the infinitely distant plane is

uniform motion. The flow field for translation toward a plane with depth of

Z1 and an infinite plane is approximately a radial flow plus a uniform flow.

Conversely, consider a flow field which consists of a uniform velocity

(u2, v2) and a radial flow pattern with the center of (xc, yc) and time to
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contact of τ1. If we built a world with the following translation, rotation and

distances, the resulting flow field would have almost the same two compo-

nents of the flow field.

• Let W be an arbitrary positive real number. A = v2, B = −u2, C = 0,

U = (xc−Bτ1)W and V = (yc+Aτ1)W . There are two frontal planes.

The depth of one plane is τ1W . The depth of the other plane is infinite.

Therefore, the flow is a rigid-motion flow corresponding to the above situa-

tion. If human observers respond to the heading direction as the FOE of the

radial flow (or the rotational flow is first compensated for and then human

observers respond to the FOE of the remaining flow), the FOE will be shifted

by (u2τ1, v2τ1). This is the original explanation by Duffy and Wurtz (1993)

who found the illusion.

2.2 Computational analysis of a flow with two foci of
expansion

When a radial flow is overlapped with anther radial flow, the FOE of the

first flow appears to be shifted (Royden & Conti, 2003). If the simulated

depth of the first plane is larger than that of the second plane, the FOE

for the first plane appears to be shifted in the direction of the FOE for the

second plane. If the simulated depth of the first plane is smaller than that
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of the second plane, the FOE of the first plane appears to be shifted in the

direction opposite to the FOE of the second plane. We analyze the two-FOE

flow pattern computationally. First we show that the flow with two foci of

expansion is approximately a rigid-motion flow as long as the two radial flows

have different values of time to contact.

We consider a situation where an observer moves toward two frontal

planes with eye movement. Suppose that C = 0 and the depth of the two

frontal planes are Z1 and Z2, respectively. The image velocities are approxi-

mately given by

u1 ≈ −U + x1W

Z1

−B (16)

v1 ≈ −V + y1W

Z1

+ A (17)

for a point on the first plane and

u2 ≈ −U + x2W

Z2

−B (18)

v2 ≈ −V + y2W

Z2

+ A (19)

for a point on the second plane. We neglected the quadratic terms about x1,

y1, x2 and y2 to derive the above equations.

The flow for the first plane is a radial flow with the center of (U/W +

BZ1/W, V/W −AZ1/W ) = (U/W +Bτ1, V/W −Aτ1), where τ1 = Z1/W
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is time to contact of the first plane. The flow for the second plane is also a

radial flow with the center of (U/W+Bτ2, V/W−Aτ2), where τ2 = Z2/W is

time to contact of the second plane. The total flow is two radial flow patterns

overlapped with each other.

Conversely, consider two radial flow patterns overlapped with each other

such that the centers of the radial patterns are (xc1, yc1) and (xc2, yc2), and

time to contact of the two planes is τ1 and τ2, respectively. If we built a world

with the following translation, rotation and distances, the resulting flow field

would have almost the same two components of the flow fields.

• LetW be an arbitrary positive real number. A = −(yc1−yc2)/(τ1−τ2),

B = (xc1 − xc2)/(τ1 − τ2), C = 0, U = (xc1 − Bτ1)W and V = (yc1 +

Aτ1)W . There are two frontal planes. The depths of two planes are

τ1W and τ2W , respectively.

Therefore, the flow is a rigid-motion flow. If human observers respond to the

heading direction as the FOE of the first radial flow (or the rotational flow

is first compensated for and then human observers respond to the FOE of

the remaining flow), the FOE will be displaced by (−Bτ1, Aτ1) = (−(xc1 −

xc2)τ1/(τ1−τ2), −(yc1−yc2)τ1/(τ1−τ2)). The bias direction depends on the

sign of the (τ1 − τ2) = (Z1 − Z2)/W , and the predicted bias was consistent

with the bias in perceived FOEs reported by Royden and Conti (2003). The
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magnitude of the predicted bias is inversely proportional to |τ1 − τ2|, or

difference of the depths of the two planes. Royden and Conti (2003) also

reported that the bias in perceived FOEs increased with decrease of the

depth differences.

2.3 Discussion

We have shown that there is at least one approximate solution under the

rigidity assumption for the radial plus lateral flow pattern or for the two

overlapped radial flow pattern. Is there another solution for the flow fields?

It is well known that if a sufficiently large number of points (e.g. eight

points) are not on the quadratic surface containing the origin, nor on the two

planes with one plane containing the origin, we can uniquely determine the

translation from the flow up to a scale factor (e.g., Kanatani, 1993). Neither

of the planes for the solutions shown above contains the origin. It implies

that the above scene and the observer’s movement correspond uniquely to

the flow up to a scale factor. (Arbitrary W corresponds to the scale factor.)

Strictly speaking, however, we cannot apply this logic to these cases because

we neglected some terms in the flow equations. However, it seems that there

is no better solution than the one presented above.

Royden and Conti (2003) showed that Royden’s (1997) heading percep-

tion model explains the illusory transformation of the optic flow field; The
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perceived position of the FOE of a flow overlapped with another radial flow

or lateral flow corresponds to the heading direction recovered by her model.

Her model recovers heading reliably as long as there are enough local depth

variations (Royden, 1997). We have shown that the flows for the illusions

can be generated by simulating situations where an observer moves toward

two stationary planes with different depths while rotating. Hence, Royden’s

model would recover the heading direction. However, any reliable heading

recovery algorithms recover the heading direction. Thus, Royden’s model is

not unique one that explains the phenomena. Any heading perception mod-

els which find veridical heading under the rigidity assumption would explain

them. Royden and Conti (2003) emphasized that local motion subtraction is

crucial for explanation of the illusions. It is not the case. The key to expla-

nation for the illusory transformation of the optic flow field is the fact that

the flows which cause the illusions are approximately rigid-motion flows.

Royden and Conti (2003) reported that the illusory transformation of the

optic flow field was larger when each radially moving dot was paired with a

dot for another radial or lateral flow within a limited spatial region. They ar-

gued that the result supports local motion subtraction rather than global one.

However, they did not show that Royden’s model using motion-opponent

operators explains the difference in the illusion between the matched and

unmatched stimuli. It seems that the difference is ascribed to other reasons
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than local motion subtraction. The matching of dots would affect primary

motion processing and would have effects on motion perception such as mo-

tion transparency and computation of self-rotation. It may cause difference

in magnitude of the illusory transformations of the optic flow field between

the matched and unmatched stimuli.

We treated a radial flow overlapped with another radial flow and a radial

flow with another lateral flow separately. If we use projective geometry, how-

ever, the distinction is unnecessary (See Kanatani (1991) for image analyses

using projective geometry). Any two lines cross a point projectively. Two

parallel flow lines cross at a point on an infinite line. The FOE of the lat-

eral flow is located on an infinite line. Time to contact of a lateral flow is

also infinite. Thus, in a projective space, we can deal with lateral flows in

the same way as with radial flows. A radial flow overlapped with a lateral

flow is a special case of two-FOE flows in projective geometry. I analyzed

the two cases separately for the readers who are not familiar with projective

geometry. It should be noted, however, that the illusory transformation of

the optic flow filed due to a lateral flow can be computationally explained in

the same way as that due to a radial flow can in projective geometry.
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3 Computational analyses of heading judge-

ment in the presence of moving objects

Royden and Hildreth (1996) examined heading perception in the presence of

an object moving laterally. They showed that perceived heading was biased

in the direction of the object’s motion when a moving object crossed the

heading point. Although the object spanned a restricted region, the flow

was similar to an expansion flow plus a lateral flow for the optic flow illusion

reported by Duffy and Wurtz (1993) and the bias in perceived heading in

the presence of an object moving laterally was consistent with the bias of

perceived FOE for the illusory transformation of the optic flow fields.

Royden and Hildreth (1996) also examined heading perception in the

presence of an object moving in depth. They showed that perceived heading

was biased in the direction of the object’s FOE. The flow had two FOEs, and

was similar to the flow with two FOEs for the illusory transformation of the

optic flow field used by Royden and Conti (2003).

Royden (2002) reported that her model of heading perception shows a

bias similar to the bias for human observers. Royden (2002) argued that

local motion subtraction is crucial for explanation of the bias. However, the

bias may be ascribed to the property of the flow itself. We analyze the flow

fields computationally, and show that the bias in perceived heading due to a
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moving object would be ascribed to heading recovery from the flow fields.

Royden and Hildreth (1996) simulated situations where an observer moved

toward two static planes in the presence of a moving object. Since the number

of the stationary planes were two (and not one), the flows used by Royden and

Hildreth (1996) were not rigid-motion flows; they could not be generated by

simulating situations where an observer moved in a stationary environment.

Hence, computational analyses like those for the illusory transformation of

the optic flow field are not possible. Instead, we take a different approach.

We recover heading for the flow minimizing standard error functions for head-

ing recovery. We will show that the optimization shows a bias similar to the

bias in perceived heading for human observers when weights to the region of

the moving object are reduced.

3.1 Error functions

We compute heading from the flow in the presence of a moving object used

by Royden and Hildreth (1996) by minimizing error functions. Let (ui, vi)

be the i-th velocity on the image point (xi, yi) (i = 1, · · · , N). Let Â, B̂, Ĉ,

Û , V̂ and Ŵ be estimates of A, B, C, U , V and W , respectively, and let

Ẑi be an estimate of the depth of the i-th image point (Zi). A natural error

function is
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J1 =
N∑
i=1

ω2
i

(
(ui − ûi)

2 + (vi − v̂i)
2
)

(20)

where

û =
−Û + xiŴ

Ẑ
− B̂ + Ĉyi + Âxiyi − B̂x2i (21)

v̂ =
−V̂ + yiŴ

Ẑ
− Ĉxi + Â+ Ây2i − B̂xiyi (22)

and ωi is a weight for the i-th image point. The error function J1 is minimized

over Â, B̂, Ĉ, Û , V̂ , Ŵ and Ẑi (i = 1, · · · .N). Velocity (ûi, v̂i) indicates

the predicted velocity on the i-th image point (xi, yi) computed from the

estimates. The error function is the sum of the weighted errors for the image

velocities.

Another possible error function is the sum of errors for the epipolar con-

straint. Let xi and ui be (xi, yi, 1)
t and (ui, vi, 0)

t, respectively, and let T and

R be (U, V,W )t and (A,B,C)t, respectively. The following equation holds

(Bruss & Horn, 1983; MacLean, Jepson, & Frecker, 1994; Zhuang, Ahuja, &

Haralick, 1988).

Tt(ui × xi) + (T× xi)
t(xi ×R) = 0 (23)

where × indicates the cross (outer) product. The equation is derived by

eliminating Z from Eqs. (6) and (7). It is an instantaneous-time version
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of the epipolar constraint (Kanatani, 1993). Hence, we may define an error

function as follows.

J2 =
N∑
i=1

∣∣∣ψi {T̂t(ui × xi) + (T̂× xi)
t(xi × R̂)

}∣∣∣2 (24)

where T̂ and R̂ are (Û , V̂ , Ŵ )t and (Â, B̂, Ĉ)t, respectively, and ψi is a weight

for the i-th image point. The error function J1 is minimized over Â, B̂, Ĉ,

Û , V̂ and Ŵ .

The two error functions are representatives of the error functions used

for recovery of camera motion in computer vision. Since the magnitude of

T cannot be determined in principle, the error function is minimized with a

constraint such as |T| = 1.

We minimized the error functions for the flow generated by an observer’s

translation in the presence of the a moving object by Algorithm II of Ruhe

and Wedin (1980) (a version of the Gauss-Newton method) with a constraint

of |T| = 1, and examined a bias in recovered heading due to the moving

object. We call the method for minimizing J1 Algorithm A and that for

minimizing J2 Algorithm B. We simulated Experiment 1 and Experiment 8

of Royden and Hildreth (1996). Royden (2002) also performed simulations

of her model (Royden, 1997) for the experiments. We show below that the

bias in heading recovered by the optimizations due to the moving object is
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qualitatively similar to the bias in perceived heading for human observers

when the weights (ωi and ψi) are appropriately set.

3.1.1 Simulation of Royden and Hildreth’s (1996) Experiment 1

We performed a simulation of Royden and Hildreth’s (1996) Experiment 1.

In the experiment, observers viewed a simulated scene of an observer moving

toward two transparent planes of moving dots with an independently moving

object. The object moved laterally relative to the observer. Hence, the

size of the object and the distance from the observer did not change during

the stimulus presentation. The initial distances from the observer to the

two planes were 400 cm and 1000 cm from the observer. The observer’s

translation speed toward the planes was 200 cm/s. The simulated heading

was 4, 5, 6, or 7 deg to the right of the center of the display. The object was

a 10 deg × 10 deg opaque square. It moved to the left or right at a speed of

8.1 deg/s. For a leftward moving object, initial positions of the object were

-1.4, 0.6, 4.7, 8.7, 10.7 and 12.7 deg from the center. For a rightward moving

object, initial positions of the object were -9.9, -5.9, -1.9, 0.2, 2.2 and 6.3

deg from the center. The viewing window was 30 deg × 30 deg. For each

simulation run, 100 points randomly positioned in the window was generated

and 20 points on the moving object was also generated. The number of

points was one-fifth of the number of moving dots for the stimuli used in the
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psychophysical experiment of Royden and Hildreth (1996). We reduced the

number of points because it would take too long time to minimize J1 if the

same number of points as in the psychophysical experiment were employed.

However, the reduction of the points would not affect the heading estimates.

The positions and the image velocities at the middle of the presentation (i.e.,

0.4 s after the start of the presentation) were then computed for each point

in the scene. (The presentation time was 0.8 s in their experiment.) The

positions and velocities were used as input for the heading recovery. For

each object position, 100 runs were performed. The data below show the

average over the 100 runs.

We set the weights ωi and ψi as follows.

ωi = αω exp

(
−(xi − xc)

2 + (yi − yc)
2)

2σ2
ω

)
(25)

ψi = αψ exp

(
−(xi − xc)

2 + (yi − yc)
2)

2σ2
ψ

)
(26)

where (xc, yc) is the position of the FOE of the static planes, and σω was

5.0× π/180 (i.e., 5.0 deg), σψ was 10.0× π/180 (i.e., 10.0 deg), and αω and

αψ were 1.0 when the i-th point belonged to either of the two stationary

planes, and they were 0.1 when it belonged to the object. The region around

the FOE was weighted more heavily by a Gaussian function of the distance

between the FOE and the flow point in order to simulate the result that

human observers show a larger bias for an object that covers the FOE. We
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Figure 2: Insert the figure about here.

used the different weights for the object and for the stationary scene since

the bias due to the moving object was too large when the equal weights were

used. The FOE for the stationary scene was used as the initial value of |T |

for the optimization.

Fig. 2 shows the average bias in the heading recovered by Algorithms A

and B. A positive bias means a bias to the right, and negative one indicates

a bias to the left. For a leftward moving object, the average bias for both

of the algorithms was leftward, and for a rightward moving object, the bias

was rightward. The position of the object affected the size of the bias. When

the object covered the FOE of the stationary scene, the effect tended to be

larger than when it did not, though for Algorithm A the effect of the leftward

moving object was largest when the object covered the region right to the

FOE. The bias for the algorithms was qualitatively similar to the bias for

human observers.

The bias for the algorithms is interpreted as follows. Since the algorithms

cannot treat non-rigid-motion flows, the algorithms must explain the lateral

flow as eye movement or lateral heading. However, the lateral heading is

implausible because the other part of the flow is a radial flow pattern. Hence

the algorithms regard the flow of the laterally moving object as the flow
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due to eye rotation. If the lateral flow is fully explained by eye movement,

however, the other part of the flow (the radial flow) will not be explained well.

(Note that if the stationary scene is one frontal plane, the radial pattern can

be explained as the illusory transformation of the optic flow can. However,

two frontal planes with different depths cannot have the same center of flow

unless there is no rotation (i.e. unless |R| = 0)). Hence the observed bias

in recovered heading would be some compromise between the two demands

from the lateral flow and the radial flow.

3.1.2 Simulation of Royden and Hildreth’s (1996) Experiment 8

We performed a simulation of Royden and Hildreth’s (1996) Experiment 8.

In the experiment, an object moved in depth relative to the observer. The

stationary scene and the observer’s movement were the same as in the first

simulation. The moving object was an opaque square that moved toward

the observer at a speed of 300 cm/s, and an angle of motion relative to the

observer was 1 or 10 deg to the right of the center of the viewing window.

Object starting positions were -1.0, 0.6, 2.25, 3.9, 5.5 and 7.1 deg for 1-deg

heading, and 0.6, 2.25, 3.9, 5.5, 7.1, 9.9 deg were for 10-deg heading. The

object’s starting size was 8 deg × 8 deg and the final size was 20 deg × 20

deg. The positions and the image velocities at the middle of the presentation

were computed for each point in the scene, and used as input for the heading
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Figure 3: Insert the figure about here.

recovery. Algorithms used in these simulations were the same as in the first

simulations.

Fig. 3 shows the average bias generated by Algorithms A and B as a

function of the starting position of the object. Both of the algorithms showed

a leftward bias for the moving object with 1-deg FOE and a rightward bias

for the object with 10-deg FOE. The tendency was qualitatively similar to

the bias for human observers.

The bias for the algorithms is interpreted as follows. Time to contact of

the object was about 1.3 s, and times to contact of the stationary two planes

were 2.0 s and 5.0 s. Remember that the computational prediction of the bias

for two radial flow pattern is −(xc1−xc2)τ1/(τ1− τ2) (see Section 2.2), where

τ1 is time to contact of the target radial flow, τ2 is time to contact of the

biasing flow, and xc1 and xc2 are the x coordinates of the center of the target

and biasing flows, respectively. For this simulation, τ2 corresponds to time

to contact of the object, that is, τ2 = 1.3 [s]. We cannot decide τ1 because

the target radial flow is the two overlapped radial flow with different values

of time to contact, and we might choose the following three value; τ2 = 2.0

(minimum), τ2 = 5.0 (maximum), or τ2 = (5.0 + 2.0)/2 (average). In either

case, τ1 − τ2 is positive. Since xc1 = 4, 5, 6 or 7 deg, the computational
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prediction should be negative for 1-deg heading of the object (xc2 = 1.0

[deg]), and it should be positive for 10-deg heading of the object (xc2 = 10.0

[deg]). This predicted bias direction is consistent with the bias directions for

Algorithms A and B, Royden’s model and human observers.

3.1.3 Discussion

We have shown that the bias in perceived heading due to independently mov-

ing objects is qualitatively similar to the bias for the algorithms that recover

heading by minimizing weighted sum of square errors of image velocities or

weighted sum of epipolar errors. Hence, Royden’ (1997) heading perception

model using motion-opponent operators is not a unique model to explain the

effects of moving objects on heading perception. Since two error functions are

representatives used in algorithms for camera motion recovery, many head-

ing algorithms explain the effects of an independently moving object. Also,

some models for heading perception were developed on the basis of the er-

ror functions. For example, Lappe and Rauschecker (1993, 1995) developed

neural network models for heading judgement, which is based on Heeger and

Jepson’ (1990, 1992) algorithm that minimizes the error function J1. Their

model should also explain the effects of moving objects.

However, we do not mean that the human visual system actually min-

imizes these error functions. Instead, we intend to show that the key to
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explanation of the effects of the moving objects is not local motion subtrac-

tion contrary to the argument of Royden (2002). Many algorithms would

explain the effect since the rigid-motion flow nearest to the flow with a mov-

ing object used by Royden and Hildreth (1996) in a weighted least-square or

least-epipolar-error sense is the flow generated by an observer’s translation

in the biased direction with some eye movement.

There were some discrepancies between the predicted bias by Algorithms

A and B and that of human observers. For example, Algorithm A shows a

large bias even when the object did not cover the observer’s path. It seems

that Algorithm B explains the human bias better. However, the peak for the

bias generated by Algorithm B was shifted slightly from that of the bias of

human observers. Also, the magnitude of the bias for the two algorithms was

larger than that for human observers, although we used fairly small weights

for the independently moving object. On the other hand, Royden’s model

predicts the position of the peak bias well, and explains the bias not only

qualitatively but also quantitatively. We did not try to find the best weights

to explain the human performance because the purpose of this research is

not to develop good models to explain the human performance, but to an-

alyze the flow computationally. There may be better weights for the error

functions J1 and J2. Also, it is implausible that the human visual system

minimizes the error functions directly as we did. Especially, direct minimiza-
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tion of J1 is computationally costly. Indirect minimization used by Lappe

and Rauschecker (1993, 1995) is needed to implement the algorithm actually.

Furthermore, computation for heading recovery should be performed by neu-

rons in the brain. If some neural constraints are included in the computation,

better prediction might be obtained.

We used Gaussian-function weighting around the FOE for the stationary

scene. The weighting was also adopted by Royden (2002) for weights from

motion-opponent operators to heading template cells. The weighting was

required to explain the fact that human observers show the bias in perceived

heading due to a moving object only when the object crosses the observer’s

path. However, a question arises; how does the visual system weight the

points as a Gaussian centered on the FOE before the heading estimation?

The weights might not be constant during the computation of heading. Per-

haps the visual system changes the weights dynamically so that the points

around the current estimate of heading would be weighted more heavily. It

is also possible that heading might be estimated by a template method us-

ing template units with larger weights for a region around the heading to

which the units are tuned. If the output of the template units reflect the

error function of Eq. (20) or (24), the template method may be regarded as

approximate minimization of the error function.

Furthermore, we used different weights for the object and for the sta-
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tionary scene, though Royden (2002) did not use the different weights. The

flows for the psychophysical experiments of Royden and Hildreth (1996) are

non-rigid-motion flows. The visual system might notice the object moving

independently, and might attempt to neglect the object’s movement for the

estimation of the observer’s movement. The small weighting value reflects

the degree of the neglect, though it seems that the visual system cannot ne-

glect it completely. However, detection of objects moving independently is

computationally hard. Can the visual system detect independently moving

objects?

The observers who participated in their experiments might know that the

object moves independently. Two out of the five observers who participate

in their experiments were the authors themselves, who should know it. The

other observers participated in some practice sessions before the experimental

session (perhaps without moving objects). The moving object in experimen-

tal sessions should draw attention, and the observers might notice that the

object moves independently. Also, there may be a mechanism which detects

objects moving independently. In fact, there are many independently mov-

ing objects when we walk in everyday life (e.g., automobiles, animals, people

and so on.), but we usually know which objects are moving independently of

our own movement. Although the computation of the detection of objects

moving independently during self-motion is fairly hard, some algorithms for
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it have been presented (Adiv, 1985; Hildreth, 1992; MacLean, Jepson, &

Frecker, 1994; Tian & Shah, 1997). These algorithms improve estimation of

self-motion by discarding motion for the objects moving independently as we

decreased the weights for the points on the objects. Thus, it seems reason-

able to assume that the visual system uses different weighting for the object

and for the stationary scene.

Warren and Saunders (1995) also examined effects of an object moving in

depth. Their stimuli were generated by simulating situations where an ob-

server moves towards a plane with an object moving independently in depth.

The situations were very similar to those that Royden and Hildreth (1996)

used, and the direction of a bias in perceived heading of human observers

reported by Warren and Saunders (1995) was similar to the bias observed in

Experiment 8 of Royden and Hildreth (1996). Warren and Saunders (1995)

simulated a single plane as a stationary scene and the flow pattern was a

two-FOE flow pattern as was analyzed for the illusory transformation of the

optic flow above. Therefore, we can find a stationary scene corresponding

to the flow pattern. The bias direction reported by Warren and Saunders

(1995) is also consistent with the bias predicted computationally.
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4 General discussion

We analyzed the flow for the illusory transformation of the optic flow field

and heading perception in the presence of independently moving objects. We

showed that there exists a flow that is generated by an observer’s movement in

a stationary scene, similar to a radial flow pattern overlapped with another

lateral flow or radial flow, which causes an illusory shift of the FOE. We

found that the heading direction for the observer’s movement corresponds to

perceived FOE. We also showed algorithms which minimized the weighted

sum of square errors of image velocities or errors of the epipolar constraint

explains the bias in perceived heading due to independently moving objects.

The computational analyses imply that the bias in perceived heading and

FOE should be ascribed to heading estimation from the flows.

Marr (1982) proposed three levels of explanation. One is a computa-

tional level of explanation, the second is an algorithmic and expressive level

of explanation, and the third is an implementational level of explanation.

Furthermore, he suggested that for each visual phenomenon there exists an

appropriate level of explanation. He gave an example. When we view a

Necker cube, the depth direction appears to reverse. He suggested that the

phenomena should be explained in the computational level. The depth direc-

tion cannot be uniquely determined from the image because an image of an
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object generated by orthographic projection is the same as an image of the

object with mirror-reflected depth. In general, structure can be determined

from orthographic projection only up to reflection; a pair of solutions exists

for an image viewed from orthographic projection. The unstable perception

reflects the two possible solutions. The computational level would be an

appropriate level of explanation. In this paper, we presented computational

explanation of the illusory transformations of the optic flow field reported by

Duffy and Wurtz (1993) and Royden and Conti (2003), and heading percep-

tion in the presence of moving objects, and show that the phenomena are

well explained computationally. Royden (2002) and Royden and Conti (2003)

argued that local motion subtraction or motion-opponent operators play a

crucial role in the phenomena. Their explanation is algorithmic or imple-

mentational. However, we have shown that neither local motion subtraction

nor motion-opponent operator is required to explain the phenomena. The

appropriate level of explanation for the phenomena is computational, and

not algorithmic nor implementational. It should be noted, however, that the

computational analyses do not deny explanation of Royden and Royden and

Conti (2002). Royden’s (1997) model predicts the biases in perceived heading

and FOE due to another flow pattern quite well (Royden, 2002; Royden &

Conti, 2003). However, the computational analyses indicate most of heading

models can explain the biases.
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Figure captions

• Figure 1. An external coordinate system moving with the observer

who is located at the origin and the corresponding image coordinates.

The observer translates by (U, V,W ) and rotates by (A,B,C). A point

P = (X,Y, Z) is projected on a image plane (Z = 1). The coordinates

of the projected point p is (x, y).

• Figure 2. Biases in heading estimates caused by a laterally moving ob-

ject. The bias (difference between the heading estimate and the actual

simulated heading) is plotted as a function of the starting position of

the object. A positive bias indicates a bias to the right and a negative

bias indicates a bias to the left. Also, positive and negative object

positions indicate starting positions to the right and to the left of the

center, respectively. Circles indicate the average bias for Algorithm A

(which minimizes the error function J1) and squares indicate the aver-

age bias for Algorithm B (which minimizes the error function J2). (a)

Biases for a leftward moving object. (b) Biases for a rightward moving

object.

• Figure 3. Biases in heading estimates caused by an object moving

in depth. The bias (difference between the heading estimate and the

actually simulated heading is plotted as a function of the starting po-
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sition of the object. A positive bias indicates a bias to the right and

a negative bias indicates a bias to the left. Also, positive and negative

object positions indicate starting positions to the right and to left of

the center, respectively. Circles indicate the average bias for Algorithm

A and squares indicate the average bias for Algorithm B. (a) Biases for

an object with FOE at 1 deg to right of the center. (b) Biases for an

object with FOE at 10 deg to right of the center.
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