{"created":"2023-06-20T12:57:06.262515+00:00","id":1143,"links":{},"metadata":{"_buckets":{"deposit":"828c74b7-1f68-49ea-bbfa-f508f86dc4a1"},"_deposit":{"created_by":2,"id":"1143","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"1143"},"status":"published"},"_oai":{"id":"oai:fun.repo.nii.ac.jp:00001143","sets":["22:33","25:26:49"]},"author_link":["29"],"item_9_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2012","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicPageEnd":"492","bibliographicPageStart":"485","bibliographicVolumeNumber":"2012","bibliographic_titles":[{"bibliographic_title":"コンピュータセキュリティシンポジウム2012"}]}]},"item_9_description_3":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"本稿は,短Weierstrass標準形で与えられる楕円曲線上の点の新しい加算公式を提案する.詳細は以下のようになる.初めに,P=(0,x1),Q=(x2,y2)となるように座標変換を行い,楕円曲線の式をy^2=x^3+ax^2+bx+cに変換する.すると,P+Qのx座標は(b-2 lambda y1)/x2 \n(lambdaはPをQを通る直線の傾き)によって計算できる.この事実は,楕円曲線の点の加算P+Qの幾何学的定義から導出できる.提案公式を用いると,アフィン座標+射影座標=射影座標のmixed coordinate系での加算公式の計算コストは約20%削減される.但し,提案手法は2倍算の計算コストを増大させてしまうため,更なる研究が必要である.","subitem_description_type":"Abstract"}]},"item_9_publisher_17":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会"}]},"item_9_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"ここに掲載した著作物の利用に関する注意:本著作物の著作権は情報処理学会に帰属します。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。All Rights Reserved, Copyright (C) Information Processing Society of Japan."}]},"item_9_select_10":{"attribute_name":"単著共著","attribute_value_mlt":[{"subitem_select_item":"単著/solo"}]},"item_9_select_8":{"attribute_name":"査読有無","attribute_value_mlt":[{"subitem_select_item":"なし/no"}]},"item_9_select_9":{"attribute_name":"研究業績種別","attribute_value_mlt":[{"subitem_select_item":"国内学会/Domestic Conference"}]},"item_9_version_type_13":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNameIdentifiers":[{"affiliationNameIdentifier":"","affiliationNameIdentifierScheme":"ISNI","affiliationNameIdentifierURI":"http://www.isni.org/isni/"}],"affiliationNames":[{"affiliationName":"","affiliationNameLang":"ja"}]}],"creatorNames":[{"creatorName":"白勢, 政明","creatorNameLang":"ja"}],"familyNames":[{"familyName":"白勢","familyNameLang":"ja"}],"givenNames":[{"givenName":"政明","givenNameLang":"ja"}],"nameIdentifiers":[{"nameIdentifier":"29","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"70530757","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=70530757"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2022-01-28"}],"displaytype":"detail","filename":"823.pdf","filesize":[{"value":"169.2 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"823.pdf","url":"https://fun.repo.nii.ac.jp/record/1143/files/823.pdf"},"version_id":"1ec0fd6b-34b3-486c-a934-2aa68a6bbf8e"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"conference paper","resourceuri":"http://purl.org/coar/resource_type/c_5794"}]},"item_title":"Weierstrass標準形の楕円曲線の加算公式について","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Weierstrass標準形の楕円曲線の加算公式について"}]},"item_type_id":"9","owner":"2","path":["33","49"],"pubdate":{"attribute_name":"公開日","attribute_value":"2013-05-10"},"publish_date":"2013-05-10","publish_status":"0","recid":"1143","relation_version_is_last":true,"title":["Weierstrass標準形の楕円曲線の加算公式について"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2025-02-07T03:06:57.124434+00:00"}