{"created":"2023-06-20T12:59:54.814094+00:00","id":3985,"links":{},"metadata":{"_buckets":{"deposit":"48bb7ab6-0fcc-4a50-8806-2ed5b697a6c7"},"_deposit":{"created_by":2,"id":"3985","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"3985"},"status":"published"},"_oai":{"id":"oai:fun.repo.nii.ac.jp:00003985","sets":["22:28","25:81:100"]},"author_link":["35","7191"],"item_5_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1992","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"542","bibliographicPageStart":"517","bibliographicVolumeNumber":"21","bibliographic_titles":[{"bibliographic_title":"Hokkaido Math. J."}]}]},"item_5_description_3":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"非線形項が未知関数の冪のみで記述される非線形波動方程式は、一般論で方程式の分類を行う上で主要な役割を果たしている。しかし今まで空間3次元ではホイヘンスの原理を用いてゼロ解の最適安定性は良く解析されていたが、空間2次元では極一部分しか結果が得られていなかった。本論文では重み付き最大値評価を用いることにより、空間2次元でもゼロ解の不安定性を評価する1つの方法を与えた。\n問題の設定と局所解の存在は上見、大域解の非存在は高村がそれぞれ主に行った。","subitem_description_type":"Abstract"}]},"item_5_description_4":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"学術論文","subitem_description_type":"Other"}]},"item_5_select_10":{"attribute_name":"単著共著","attribute_value_mlt":[{"subitem_select_item":"共著/joint"}]},"item_5_select_8":{"attribute_name":"査読有無","attribute_value_mlt":[{"subitem_select_item":"あり/yes"}]},"item_5_select_9":{"attribute_name":"研究業績種別","attribute_value_mlt":[{"subitem_select_item":"原著論文/Original Paper"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Agemi, Rentaro"}],"nameIdentifiers":[{"nameIdentifier":"7191","nameIdentifierScheme":"WEKO"}]},{"creatorAffiliations":[{"affiliationNameIdentifiers":[{"affiliationNameIdentifier":"","affiliationNameIdentifierScheme":"ISNI","affiliationNameIdentifierURI":"http://www.isni.org/isni/"}],"affiliationNames":[{"affiliationName":"","affiliationNameLang":"ja"}]}],"creatorNames":[{"creatorName":"高村, 博之","creatorNameLang":"ja"}],"familyNames":[{"familyName":"高村","familyNameLang":"ja"}],"givenNames":[{"givenName":"博之","givenNameLang":"ja"}],"nameIdentifiers":[{"nameIdentifier":"35","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"40241781","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=40241781"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"The lifespan of classical solutions to nonlinear wave equations in two space dimensions","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"The lifespan of classical solutions to nonlinear wave equations in two space dimensions"}]},"item_type_id":"5","owner":"2","path":["28","100"],"pubdate":{"attribute_name":"公開日","attribute_value":"2010-11-26"},"publish_date":"2010-11-26","publish_status":"0","recid":"3985","relation_version_is_last":true,"title":["The lifespan of classical solutions to nonlinear wave equations in two space dimensions"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2025-02-07T03:30:03.267648+00:00"}