{"created":"2023-06-20T13:00:02.437263+00:00","id":4111,"links":{},"metadata":{"_buckets":{"deposit":"804b8a7b-1c48-462f-b052-f56165fd067b"},"_deposit":{"created_by":2,"id":"4111","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"4111"},"status":"published"},"_oai":{"id":"oai:fun.repo.nii.ac.jp:00004111","sets":["22:28","25:81:102"]},"author_link":["79"],"item_5_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2014","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"56","bibliographicPageStart":"25","bibliographicVolumeNumber":"31","bibliographic_titles":[{"bibliographic_title":"Japan Journal of Industrial and Applied Mathematics"}]}]},"item_5_description_3":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We present the convergence rates and the explicit error bounds of Hill’s method, which is a numerical method for computing the spectra of ordinary differential operators with periodic coefficients. This method approximates the operator by a finite dimensional matrix. On the assumption that the operator is self-adjoint, it is shown that, under some conditions, we can obtain the convergence rates of eigenvalues with respect to the dimension and the explicit error bounds. Numerical examples demonstrate that we can verify these conditions using Gershgorin’s theorem for some real problems. Main theorems are proved using the Dunford integrals which project an vector to a specific eigenspace.","subitem_description_type":"Abstract"}]},"item_5_publisher_17":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Springer Japan"}]},"item_5_select_10":{"attribute_name":"単著共著","attribute_value_mlt":[{"subitem_select_item":"共著/joint"}]},"item_5_select_8":{"attribute_name":"査読有無","attribute_value_mlt":[{"subitem_select_item":"あり/yes"}]},"item_5_select_9":{"attribute_name":"研究業績種別","attribute_value_mlt":[{"subitem_select_item":"原著論文/Original Paper"}]},"item_5_source_id_6":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"09167005","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNameIdentifiers":[{"affiliationNameIdentifier":"","affiliationNameIdentifierScheme":"ISNI","affiliationNameIdentifierURI":"http://www.isni.org/isni/"}],"affiliationNames":[{"affiliationName":"","affiliationNameLang":"ja"}]}],"creatorNames":[{"creatorName":"田中, 健一郎","creatorNameLang":"ja"}],"familyNames":[{"familyName":"田中","familyNameLang":"ja"}],"givenNames":[{"givenName":"健一郎","givenNameLang":"ja"}],"nameIdentifiers":[{"nameIdentifier":"79","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"70610640","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=70610640"},{"nameIdentifier":"0000-0003-0359-0969","nameIdentifierScheme":"ORCIDID","nameIdentifierURI":"https://orcid.org/0000-0003-0359-0969"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Convergence rates and explicit error bounds of Hill's method for spectra of self-Adjoint differential operators","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Convergence rates and explicit error bounds of Hill's method for spectra of self-Adjoint differential operators"}]},"item_type_id":"5","owner":"2","path":["28","102"],"pubdate":{"attribute_name":"公開日","attribute_value":"2014-09-03"},"publish_date":"2014-09-03","publish_status":"0","recid":"4111","relation_version_is_last":true,"title":["Convergence rates and explicit error bounds of Hill's method for spectra of self-Adjoint differential operators"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2025-02-07T04:47:38.181992+00:00"}