ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 文献種別
  2. 学術雑誌論文/Journal Article
  1. 研究者
  2. 複雑系知能学科
  3. 三上 貞芳 (MIKAMI, Sadayoshi)

Adaptive Nutrient Water Supply Control of Plant Factory System by Reinforcement Learning

http://hdl.handle.net/10445/8450
http://hdl.handle.net/10445/8450
d2e5b3a6-1948-487b-9c7d-ce36853a82ca
名前 / ファイル ライセンス アクション
2011-JACIII-Wakahara.pdf 2011-JACIII-Wakahara.pdf (2.4 MB)
 Download is available from 2999/12/31.
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-03-24
タイトル
タイトル Adaptive Nutrient Water Supply Control of Plant Factory System by Reinforcement Learning
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Wakahara, Takumi

× Wakahara, Takumi

WEKO 9212

Wakahara, Takumi

Search repository
三上, 貞芳

× 三上, 貞芳

WEKO 51
e-Rad 50229655
ORCIDID 0000-0002-6059-7983

ja 三上, 貞芳
ISNI


Search repository
抄録
内容記述タイプ Abstract
内容記述 An adaptive nutrient control method for a plant factory is proposed. The method is based on a Reinforcement Learning modified for a target in which one state never comes back during a single episode and a reward is given after a very long delay. In application such as plant growth control, one episode takes a very long time period, and a rapid convergence to a prospective control solution is essential, whilst an extensive exploration is needed since there is usually no precise model available. A method like Reinforcement Learning is useful for a problem having no reference model. But a necesity of exploration does not match the need for rapid convergence, and a new balancing method is needed. In this research, an avarage reward distribution method is proposed, which is similar to the Profit Sharing method but affects more extensively to find much prospective early solutions, whilst guaranteeing to converge into a rational solution in a long run. An experiment is conducted in a simple plant factory system, which shows that at least standard Reinforcement Learning is insufficient for this type of problem. Computer simulations show that the method has good effects comparing to a standard RL, and a profit sharing method.
内容記述
内容記述タイプ Other
内容記述 doi: 10.20965/jaciii.2011.p0831
書誌情報 Journal of Advanced Computational Intelligence and Intelligent Informatics

巻 15, 号 7, p. 831-837, 発行日 2011-09
査読有無
値 あり/yes
研究業績種別
値 原著論文/Original Paper
単著共著
値 共著/joint
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.20965/jaciii.2011.p0831
出版者
出版者 Fuji Technology Press
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 13:15:35.126585
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3