ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 文献種別
  2. 学術雑誌論文/Journal Article
  1. 研究者
  2. 情報アーキテクチャ学科
  3. ピトヨ・ハルトノ (Pitoyo, Hartono)

Fast reinforcement learning for simple physical robots

http://hdl.handle.net/10445/5286
http://hdl.handle.net/10445/5286
d0ada507-81cf-49e7-a848-99cd90b3a762
Item type 学術雑誌論文 / Journal Article(1)
公開日 2010-11-29
タイトル
タイトル Fast reinforcement learning for simple physical robots
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Hartono, Pitoyo

× Hartono, Pitoyo

WEKO 67
e-Rad 90339747
ORCIDID 0000-0002-2807-6002

en Hartono, Pitoyo


ja ISNI

Search repository
Kakita, Sachiko

× Kakita, Sachiko

WEKO 3679

Kakita, Sachiko

Search repository
抄録
内容記述タイプ Abstract
内容記述 In the past few years, the field of autonomous robot has been rigorously studied and non-industrial applications of robotics are rapidly emerging. One of the most interesting aspects of this field is the development of the learning ability which enables robots to autonomously adapt to given environments without human guidance. As opposed to the conventional methods of robots' control, where human logically design the behavior of a robot, the ability to acquire action strategies through some learning processes will not only significantly reduce the production costs of robots but also improves the applicability of robots in wider tasks and environments. However, learning algorithms usually require large calculation cost, which make them unsuitable for robots with limited resources. In this study, we propose a simple two-layered neural network that implements a novel and fast Reinforcement Learning. The proposed learning method requires significantly less calculation resources, hence applicable to small physical robots running in the real world environments.For this study, we built several simple robots and implemented the proposed learning mechanism to them. In the experiments, to evaluate the efficacy of the proposed learning mechanism, several robots were simultaneously trained to acquire obstacle avoidance strategies in a same environment, thus, forming a dynamic environment where the learning task is substantially harder than in the case of learning in a static environment.
書誌情報 Memetic Computing Journal

巻 1, 号 4, p. 305-313, 発行日 2009
査読有無
値 あり/yes
研究業績種別
値 原著論文/Original Paper
単著共著
値 共著/joint
出版者
出版者 Springer
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 14:01:44.750934
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3