WEKO3
アイテム
Blow-up for nonlinear wave equations with slowly decaying data
http://hdl.handle.net/10445/4982
http://hdl.handle.net/10445/4982149b1476-64cc-4108-bd7d-38aad22efc0c
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-11-26 | |||||
タイトル | ||||||
タイトル | Blow-up for nonlinear wave equations with slowly decaying data | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Takamura, Hiroyuki
× Takamura, Hiroyuki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 「Global exsitence for nonlinear wave euqations with smalldata of noncompact support in three space dimensions」の論文で得られた、台がコンパクトでない初期値に対する非線形波動方程式の存在定理により、どこまで初期値の減衰を緩めて良いかという1つの疑問が生まれた。空間次元が3以下では波動方程式の基本解に正値性があるためそれは良く解析されていたが、それより大きい次元では特に緩い減衰による大域解の非存在が全く証明されていなかった。本論文では方程式の非線形性が未知関数の時間微分のみで書けている場合、次元は一部であるが大域解の非存在を単純な各点評価の逐次代入法によって示した。更にその減衰の臨界オーダーも明らかにした。 | |||||
内容記述 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 学術論文 | |||||
書誌情報 |
Mathematische zeitschrift 巻 217, 号 1, p. 567-576, 発行日 1994 |
|||||
査読有無 | ||||||
値 | あり/yes | |||||
研究業績種別 | ||||||
値 | 原著論文/Original Paper | |||||
単著共著 | ||||||
値 | 単著/solo |