WEKO3
アイテム
自己計測類似度を用いたマルチタスクガウス過程
http://hdl.handle.net/10445/6869
http://hdl.handle.net/10445/68692302ef24-62a8-42d0-a385-5b48f6af6155
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-04-15 | |||||
タイトル | ||||||
タイトル | 自己計測類似度を用いたマルチタスクガウス過程 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
林, 浩平
× 林, 浩平× 竹之内, 高志× 冨岡, 亮太× 鹿島, 久嗣 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Multi-task learning aims at transferring knowledge between similar tasks. The multi-task Gaussian process framework of Bonilla et al.models (incomplete) responses of C data points for R tasks (e.g., the responses are given by R × C matrix) by a Gaussian process; the covariance function is defined as the product of a covariance function on input-dependent features and the inter-task covariance matrix (which is empirically estimated as a model parameter). We extend this framework by incorporating a novel similarity measurement, which allows for the representation of much more complex data structures. The proposed framework also enables us to exploit additional information (e.g., the input-dependent features) by constructing the covariance matrices with combining them on the covariance function. We also derive an efficient learning algorithm to make prediction by using an iterative method. Finally, we apply our model to a real data set of recommender systems and show that the proposed method achieves the best prediction accuracy on the data set. | |||||
書誌情報 |
人工知能学会論文誌 巻 27, 号 3, p. 103-110, 発行日 2012-01-01 |
|||||
査読有無 | ||||||
値 | あり/yes | |||||
研究業績種別 | ||||||
値 | 原著論文/Original Paper | |||||
単著共著 | ||||||
値 | 共著/joint | |||||
出版者 | ||||||
出版者 | 人工知能学会 |