ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 文献種別
  2. 会議発表論文/Conference Paper
  1. 研究者
  2. 複雑系知能学科
  3. 斉藤 朝輝 (Saito, Asaki)

Dynamical Singularities in Online Learning of Recurrent Neural Networks

http://hdl.handle.net/10445/6017
http://hdl.handle.net/10445/6017
d2d4b0fb-0608-41d4-a5b0-bbcbc67e77a0
名前 / ファイル ライセンス アクション
saito_2007_01_IEEES001P026.pdf saito_2007_01_IEEES001P026.pdf (3.4 MB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2011-04-18
タイトル
タイトル Dynamical Singularities in Online Learning of Recurrent Neural Networks
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者 斉藤, 朝輝

× 斉藤, 朝輝

WEKO 26
e-Rad 60344040

ja 斉藤, 朝輝
ISNI


Search repository
Taiji, Makoto

× Taiji, Makoto

WEKO 6793

Taiji, Makoto

Search repository
Ikegami, Takashi

× Ikegami, Takashi

WEKO 6794

Ikegami, Takashi

Search repository
抄録
内容記述タイプ Abstract
内容記述 We numerically and theoretically demonstrate various singularities, as a dynamical system, of a simple online learning system of a recurrent neural network (RNN) where RNN performs the one-step prediction of a time series generated by a one-dimensional map. More specifically, we show first through numerical simulations that the learning system exhibits singular behaviors (“neutral behaviors”) different from ordinary chaos, such as almost zero finite-time Lyapunov exponents, as well as inaccessibility and power-law decay of the distribution of learning times (transient times). Also, we show through linear stability analysis that, as a dynamical system, the learning system is represented by a singular map whose Jacobian matrix has eigenvalue unity in the whole phase space. In particular, we state that the singularity as a dynamical system (shown by the second method) provides a basic reason for the neutral behaviors (shown by the first method) exhibited by the learning system.
書誌情報 Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence (FOCI 2007)

p. 174-179, 発行日 2007
研究業績種別
値 国際会議/International Conference
単著共著
値 共著/joint
権利
権利情報 (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 IEEE
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 13:35:41.889465
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3